AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS

Zhenyu Zhu1Janak Tiwari2Tianli Feng2Zhan Shi3Yue Lou1( )Biao Xu1,4( )
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Department of Mechanical Engineering, The University of Utah, Salt Lake City, UT 84112, USA
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China
Show Author Information

Graphical Abstract

The difference in morphology of PbS nanocrystals leads to different stackings, tunable thermal conductivity. Ultimately the ZT value of the porous structure (4#) is greatly improved under the multiple phonons scattering mechanism as compared to the high-density sample (5#).

Abstract

PbS-based thermoelectric materials have attracted extensive attention in recent years for the advantages of earth abundancy and low cost, which is considered to be a substitute for traditional PbTe material. However, their high thermal conductivity restricts its development. Hence, in order to improve their thermoelectric performance from reducing the thermal conductivity, a kind of dendritic PbS with controlled crystal grain and morphology are obtained by solution synthesis. By adjusting the amount of surfactant (CTAB), the specific formation process of dendrites is regulated. After sintering, the dendritic PbS nanoparticles are easy to form porous structure due to the overlapping and staggered arrangement of dendritic branches. For comparison, we also prepare a kind of regular octahedral PbS and a dense packing arrangement is formed because of the integrity of the octahedral structure. DFT-based Boltzmann transport equation is used to prove the crucial role of porous structure in scattering phonon. Finally, a maximum zT = 1.0 at 773 K in n-type PbS is obtained, which still keep a high-speed growth and is expected to get higher zT value in a higher temperature region. Our work may shed light to other thermoelectric materials from the formation of porous structure to reduce the thermal conductivity.

Electronic Supplementary Material

Download File(s)
12274_2022_4117_MOESM1_ESM.pdf (2 MB)

References

1

Zhao, D. L.; Tan, G. A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 2014, 66, 15–24.

2

Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515.

3

He, W.; Zhang, G.; Zhang, X. X.; Ji, J.; Li, G. Q.; Zhao, X. D. Recent development and application of thermoelectric generator and cooler. Appl. Energy 2015, 143, 1–25.

4

Fitriani; Ovik, R.; Long, B. D.; Barma, M. C.; Riaz, M.; Sabri, M. F. M.; Said, S. M.; Saidur, R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 2016, 64, 635–659.

5

Zhang, M. L.; Wang, Y. G.; Chen, W. X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. J. Am. Chem. Soc. 2017, 139, 10976–10979.

6

Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.

7

Xu, B.; Feng, T. L.; Li, Z.; Zheng, W.; Wu, Y. Large-scale, solution-synthesized nanostructured composites for thermoelectric applications. Adv. Mater. 2018, 30, 1801904.

8

Xu, B.; Feng, T. L.; Agne, M. T.; Zhou, L.; Ruan, X. L.; Snyder, G. J.; Wu, Y. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew. Chem., Int. Ed. 2017, 56, 3546–3551.

9

Parker, D.; Singh, D. J. High temperature thermoelectric properties of rock-salt structure PbS. Solid State Commun. 2014, 182, 34–37.

10

Zhao, L. D.; Lo, S. H.; He, J. Q.; Li, H.; Biswas, K.; Androulakis, J.; Wu, C. I.; Hogan, T. P.; Chung, D. Y.; Dravid, V. P. et al. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures. J. Am. Chem. Soc. 2011, 133, 20476–20487.

11

Zhao, L. D.; He, J. Q.; Wu, C. I.; Hogan, T. P.; Zhou, X. Y.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Thermoelectrics with earth abundant elements: High performance p-type PbS nanostructured with SrS and CaS. J. Am. Chem. Soc. 2012, 134, 7902–7912.

12

Zhao, L. D.; He, J. Q.; Hao, S. Q.; Wu, C. I.; Hogan, T. P.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J. Am. Chem. Soc. 2012, 134, 16327–16336.

13

Yang, J.; Zhang, X. Z.; Liu, G. W.; Zhao, L. J.; Liu, J. L.; Shi, Z. Q.; Ding, J. N.; Qiao, G. J. Multiscale structure and band configuration tuning to achieve high thermoelectric properties in n-type PbS bulks. Nano Energy 2020, 74, 104826.

14

Wang, H.; Wang, J. L.; Cao, X. L.; Snyder, G. J. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. J. Mater. Chem. A 2014, 2, 3169–3174.

15

Wang, J. L.; Wang, H.; Snyder, G. J.; Zhang, X.; Ni, Z. H.; Chen, Y. F. Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions. J. Phys. D Appl. Phys. 2013, 46, 405301.

16

Johnsen, S.; He, J. Q.; Androulakis, J.; Dravid, V. P.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G. Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 2011, 133, 3460–3470.

17

Xiao, Y.; Wang, D. Y.; Zhang, Y.; Chen, C. R.; Zhang, S. X.; Wang, K. D.; Wang, G. T.; Pennycook, S. J.; Snyder, G. J.; Wu, H. J. et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. J. Am. Chem. Soc. 2020, 142, 4051–4060.

18

Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.

19

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

20

Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476.

21

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

22

Duan, H. H.; Wang, D. S.; Li, Y. D. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792.

23

Kuang, D.; Xu, A.; Fang, Y.; Liu, H.; Frommen, C.; Fenske, D. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 2003, 15, 1747–1750.

24

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.

25

Pan, L.; Mitra, S.; Zhao, L. D.; Shen, Y. W.; Wang, Y. F.; Felser, C.; Berardan, D. The role of ionized impurity scattering on the thermoelectric performances of rock salt AgPbmSnSe2+m. Adv. Funct. Mater. 2016, 26, 5149–5157.

26

Shuai, J.; Mao, J.; Song, S. W.; Zhu, Q.; Sun, J. F.; Wang, Y. M.; He, R.; Zhou, J. W.; Chen, G.; Singh, D. J. et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy Environ. Sci. 2017, 10, 799–807.

27

Shi, X. L.; Wu, A. Y.; Feng, T. L.; Zheng, K.; Liu, W. D.; Sun, Q.; Hong, M.; Pantelides, S. T.; Chen, Z. G.; Zou, J. High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering. Adv. Energy Mater. 2019, 9, 1803242.

28

Nassary, M. M. The electrical conduction mechanisms and thermoelectric power of SnSe single crystals. Turkish J. Phys. 2009, 33, 201–208.

29

Li, Y. W.; Li, F.; Dong, J. F.; Ge, Z. H.; Kang, F. Y.; He, J. Q.; Du, H. D.; Li, B.; Li, J. F. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J. Mater. Chem. C 2016, 4, 2047–2055.

30

Fu, C. G.; Bai, S. Q.; Liu, Y. T.; Tang, Y. S.; Chen, L. D.; Zhao, X. B.; Zhu, T. J. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 2015, 6, 8144.

31

Li, J.; Zhang, X. Y.; Lin, S. Q.; Chen, Z. W.; Pei, Y. Z. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 2017, 29, 605–611.

32

Li, Y. H.; Wu, Z. H.; Lin, J. H.; Wang, Y. Y.; Mao, J. H.; Xie, H. Q.; Li, Z. Enhanced thermoelectric performance of hot-press Bi-doped n-type polycrystalline PbS. Mater. Sci. Semicond. Process. 2021, 121, 105393.

33

Du, X. L.; Wang, Y. L.; Shi, R. N.; Mao, Z. Y.; Yuan, Z. H. Effects of anion and cation doping on the thermoelectric properties of n-type PbS. J. Eur. Ceram. Soc. 2018, 38, 3512–3517.

34

Guo, F. K.; Cui, B.; Li, C.; Wang, Y. M.; Cao, J.; Zhang, X. H.; Ren, Z. F.; Cai, W.; Sui, J. H. Ultrahigh thermoelectric performance in environmentally friendly SnTe achieved through stress-induced lotus-seedpod-like grain boundaries. Adv. Funct. Mater. 2021, 31, 2101554.

35

Aketo, D.; Shiga, T.; Shiomi, J. Scaling laws of cumulative thermal conductivity for short and long phonon mean free paths. Appl. Phys. Lett. 2014, 105, 131901.

36

Wu, H. J.; Carrete, J.; Zhang, Z. Y.; Qu, Y. Q.; Shen, X. T.; Wang, Z.; Zhao, L. D.; He, J. Q. Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 2014, 6, e108.

37

Yang, X. L.; Carrete, J.; Wang, Z. Optimizing phonon scattering by nanoprecipitates in lead chalcogenides. Appl. Phys. Lett. 2016, 108, 113901.

38

Xu, B.; Feng, T. L.; Li, Z.; Pantelides, S. T.; Wu, Y. Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 2018, 18, 4034–4039.

39

Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.

40

Zhang, H.; Hua, C. Y.; Ding, D.; Minnich, A. J. Length dependent thermal conductivity measurements yield phonon mean free path spectra in nanostructures. Sci. Rep. 2015, 5, 9121.

41

Jiang, B. B.; Liu, X. X.; Wang, Q.; Cui, J.; Jia, B. H.; Zhu, Y. K.; Feng, J. H.; Qiu, Y.; Gu, M.; Ge, Z. et al. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials. Energy Environ. Sci. 2020, 13, 579–591.

42

Fu, L. W.; Yin, M. J.; Wu, D.; Li, W.; Feng, D.; Huang, L.; He, J. Q. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects. Energy Environ. Sci. 2017, 10, 2030–2040.

43

Wang, H.; Schechtel, E.; Pei, Y. Z.; Snyder, G. J. High thermoelectric efficiency of n-type PbS. Adv. Energy Mater. 2013, 3, 488–495.

44

Luo, Z. Z.; Hao, S. Q.; Cai, S. T.; Bailey, T. P.; Tan, G. J.; Luo, Y. B.; Spanopoulos, I.; Uher, C.; Wolverton, C.; Dravid, V. P. et al. Enhancement of thermoelectric performance for n-type PbS through synergy of gap state and fermi level pinning. J. Am. Chem. Soc. 2019, 141, 6403–6412.

45

Du, X. L.; Shi, R. N.; Guo, Y.; Wang, Y. L.; Ma, Y. C.; Yuan, Z. H. Enhanced thermoelectric properties of Pb1-xBixS prepared with hydrothermal synthesis and microwave sintering. Dalton Trans. 2017, 46, 2129–2136.

Nano Research
Pages 4739-4746
Cite this article:
Zhu Z, Tiwari J, Feng T, et al. High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS. Nano Research, 2022, 15(5): 4739-4746. https://doi.org/10.1007/s12274-022-4117-9
Topics:

842

Views

13

Crossref

10

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 15 December 2021
Revised: 24 December 2021
Accepted: 26 December 2021
Published: 24 February 2022
© Tsinghua University Press 2022
Return