AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform

Xuetao Xu1,5,§Xizi Wan1,§Haonan Li1,5Yikai Zhang1,5Wen He2Shuli Wang2Miao Wang3( )Xu Hou2,4 ( )Shutao Wang1,5( )
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
College of Materials, Xiamen University, Xiamen 361005, China
College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Xuetao Xu and Xizi Wan contributed equally to this work.

Show Author Information

Graphical Abstract

We propose an organogel-hydrogel compositing strategy for optimizing comprehensiveperformances of solar-driven evaporators in practical oil-polluted water purification. Ultra-stablefloating ability, anti-oil-fouling property, accelerated vaporization process, long-term salt-resistance, and scalability are integrated at one platform.

Abstract

Solar-driven evaporators are promising for tackling freshwater scarcity but still challenged in simultaneously realizing comprehensive performances at one platform for sustainable and efficient application in real-world environments, such as stable-floating, scalability, salt-resistance, efficient vaporization, and anti-oil-fouling property. Herein, we design a hybrid organohydrogel evaporator to achieve the enduring oil contamination repulsion with maintaining accelerated evaporation process, and integrate capacities of ultra-stable floating, hindered salt-crystallization, large-scale fabrication for practical purification of seawater and polluted solutions. The raised water surface surrounding evaporators, induced by low density of organogel-phase, results in oil contamination resistance through the lateral capillary repulsion effect. Meanwhile, the organogel-phase containing photo-thermal carbon-nanotubes with low thermal capacity and conduction can form locally confined hot dots under solar irradiation and reduce heat dissipation on heating excessive water. Therefore, based on this approach, accelerated long-term practical purification of oil-contaminated solutions without any extra disposal is realized. Considering other properties of ultra-stable floating, large-scale fabrication, and anti-salt crystallization, these innovative organohydrogel evaporators open pathways for purifying oil-slick-polluted water via interfacial evaporation and are anticipated accelerating industrialization of efficient and sustainable solar-driven water purification.

Electronic Supplementary Material

Video
12274_2022_4118_MOESM1_ESM.mp4
12274_2022_4118_MOESM2_ESM.mp4
12274_2022_4118_MOESM3_ESM.mp4
12274_2022_4118_MOESM4_ESM.mp4
12274_2022_4118_MOESM5_ESM.mp4
Download File(s)
12274_2022_4118_MOESM6_ESM.pdf (2.1 MB)

References

1

Sutherland, B. R. Arid forecasts for alternative energy-efficient desalination. Joule 2019, 3, 1410–1411.

2

Boussouga, Y. A.; Richards, B. S.; Schäfer, A. I. Renewable energy powered membrane technology: System resilience under solar irradiance fluctuations during the treatment of fluoride-rich natural waters by different nanofiltration/reverse osmosis membranes. J. Memb. Sci. 2021, 617, 118452.

3

Chowdhury, M. R.; Steffes, J.; Huey, B. D.; McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 2018, 361, 682–686.

4

Lin, S. H. Energy efficiency of desalination: Fundamental insights from intuitive interpretation. Environ. Sci. Technol. 2020, 54, 76–84.

5

Wang, L.; Lin, S. H. Mechanism of selective ion removal in membrane capacitive deionization for water softening. Environ. Sci. Technol. 2019, 53, 5797–5804.

6

Dudchenko, A. V.; Chen, C. X.; Cardenas, A.; Rolf, J.; Jassby, D. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nat. Nanotechnol. 2017, 12, 557–563.

7

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

8

Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

9

Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

10

Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

11

Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

12

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

13

Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

14

Wang, Z. X.; Horseman, T.; Straub, A. P.; Yip, N. Y.; Li, D. Y.; Elimelech, M.; Lin, S. H. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 2019, 5, eaax0763.

15

He, W.; Zhou, L.; Wang, M.; Cao, Y.; Chen, X. M.; Hou, X. Structure development of carbon-based solar-driven water evaporation systems. Sci. Bull. 2021, 66, 1472–1483.

16

Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

17

Singh, S. C.; ElKabbash, M.; Li, Z. L.; Li, X. H.; Regmi, B.; Madsen, M.; Jalil, S. A.; Zhan, Z. B.; Zhang, J. H.; Guo, C. L. Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 2020, 3, 938–946.

18

Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem. , Int. Ed. 2019, 58, 19041–19046.

19

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

20

Guo, Y. H.; Lu, H. Y.; Zhao, F.; Zhou, X. Y.; Shi, W.; Yu, G. H. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 2020, 32, 1907061.

21

Lu, Q. C.; Shi, W. X.; Yang, H. Z.; Wang, X. Nanoconfined water-molecule channels for high-yield solar vapor generation under weaker sunlight. Adv. Mater. 2020, 32, 2001544.

22

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx mxene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

23

Hou, X.; Hu, Y. H.; Grinthal, A.; Khan, M.; Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 2015, 519, 70–73.

24

Hou, X.; Li, J. Y.; Tesler, A. B.; Yao, Y. X.; Wang, M.; Min, L. L.; Sheng, Z. Z.; Aizenberg, J. Dynamic air/liquid pockets for guiding microscale flow. Nat. Commun. 2018, 9, 733.

25

Wang, M. M.; Zhang, J.; Wang, P.; Li, C. P.; Xu, X. L.; Jin, Y. D. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 2018, 11, 3854–3863.

26

Dong, X. Y.; Cao, L. T.; Si, Y.; Ding, B.; Deng, H. B. Ellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 2020, 32, 1908269.

27

Kuang, Y. D.; Chen, C. J.; He, S. M.; Hitz, E. M.; Wang, Y. L.; Gan, W. T.; Mi, R. Y.; Hu, L. B. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 2019, 31, 1900498.

28

Liu, H.; Chen, C. J.; Chen, G.; Kuang, Y. D.; Zhao, X. P.; Song, J. W.; Jia, C.; Xu, X.; Hitz, E.; Xie, H. et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 2018, 8, 1701616.

29

Crone, T. J.; Tolstoy, M. Magnitude of the 2010 Gulf of Mexico oil leak. Science 2010, 330, 634.

30

Escobar, H. Mystery oil spill threatens marine sanctuary in Brazil. Science 2019, 366, 672.

31

Wu, S. H.; Gong, B. Y.; Yang, H. C.; Tian, Y. K.; Xu, C. X.; Guo, X. Z.; Xiong, G. P; Luo, T. F.; Yan, J. H.; Cen, K. F. et al. Plasma-made graphene nanostructures with molecularly dispersed F and Na sites for solar desalination of oil-contaminated seawater with complete in-water and in-air oil rejection. ACS Appl. Mater. Interfaces 2020, 12, 38512–38521.

32

Ma, Q. L.; Yin, P. F.; Zhao, M. T.; Luo, Z. Y.; Huang, Y.; He, Q. Y.; Yu, Y. F.; Liu, Z. Q.; Hu, Z. N.; Chen, B. et al. Mof-based hierarchical structures for solar-thermal clean water production. Adv. Mater. 2019, 31, 1808249.

33

Zou, Y.; Zhao, J. Y.; Zhu, J. Y.; Guo, X. Y.; Chen, P.; Duan, G. G.; Liu, X. H.; Li, Y. W. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624.

34

Ju, G. N.; Yang, X.; Li, L.; Cheng, M. J.; Shi, F. Removal of oil spills through a self-propelled smart device. Chem. Asian J. 2019, 14, 2435–2439.

35

Jiang, J. K.; Gao, J.; Zhang, H. D.; He, W. Q.; Zhang, J. Q.; Daniel, D.; Yao, X. Directional pumping of water and oil microdroplets on slippery surface. Proc. Natl. Acad. Sci. USA 2019, 116, 2482–2487.

36

Cavallaro, M. Jr.; Botto, L.; Lewandowski, E. P.; Wang, M.; Stebe, K. J. Curvature-driven capillary migration and assembly of rod-like particles. Proc. Natl. Acad. Sci. USA 2011, 108, 20923–20928.

37

Hinrichsen, G.; Hoffmann, A.; Schleeh, T.; Macht, C. Continuous production of ultrathin polymeric nanofilms using the spontaneous film formation technique. Adv. Polym. Technol. 2003, 22, 120–125.

38

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Rosenberger, B.; Yu, G. H. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.

39

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Yu, G. H. Hydrogels as an emerging material platform for solar water purification. ACC. Chem. Res. 2019, 52, 3244–3253.

40

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.

41

Guo, Y. H.; Zhao, F.; Zhou, X. Y.; Chen, Z. C.; Yu, G. H. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536.

42
World Health Organization. Safe Drinking-water from Desalination [Online]. http://apps.who.int/iris/bitstream/handle/10665/70621/WHO_HSE_WSH_11.03_eng.pdf?sequence=1 (accessed Dec 8, 2021).
43

Wu, S. H.; Xiong, G. P.; Yang, H. C.; Gong, B. Y.; Tian, Y. K.; Xu, C. X.; Wang, Y.; Fisher, T.; Yan, J. H.; Cen, K. F. et al. Multifunctional solar waterways: Plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Adv. Energy Mater. 2019, 9, 1901286.

44

Zou, Y.; Wu, X. A.; Li, H. T.; Yang, L.; Zhang, C. Q.; Wu, H. X.; Li, Y. W.; Xiao, L. Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydr. Polym. 2021, 254, 117404.

45

Hu, C. S.; Li, H. J.; Wang, J. Y.; Haleem, A.; Li, X. C.; Siddiq, M.; He, W. D. Mushroom-like rGO/PAM hybrid cryogels with efficient solar-heating water evaporation. ACS Appl. Energy Mater. 2019, 2, 7554–7563.

46

He, M. T.; Liu, H. J.; Wang, L. M.; Qin, X. H; Yu, J. Y. One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation. Mater. Chem. Front. 2021, 5, 3673–3680.

47

Chen, L. H.; Xia, M. M.; Du, J. B.; Luo, X. F.; Zhang, L.; Li, A. Superhydrophilic and oleophobic porous architectures based on basalt fibers as oil-repellent photothermal materials for solar steam generation. Chemsuschem 2020, 13, 493–500.

Nano Research
Pages 5653-5662
Cite this article:
Xu X, Wan X, Li H, et al. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Research, 2022, 15(6): 5653-5662. https://doi.org/10.1007/s12274-022-4118-8
Topics:

944

Views

13

Crossref

17

Web of Science

15

Scopus

3

CSCD

Altmetrics

Received: 23 December 2021
Accepted: 24 December 2021
Published: 22 March 2022
© Tsinghua University Press 2022
Return