Graphical Abstract

Pore structure plays critical roles in electrode kinetics but very challenging to tailor porous nanowires with rationally distributed pore sizes in a bioelectrochemical system. Herein a hierarchically porous nanowires-material is delicately tuned for an optimal pore structure by adjusting the weight percentage of SiO2-hard template in an electrospinning precursor solution. The as-prepared optimal electrospinning nanowires further used as an anode of microbial fuel cells (MFCs), delivering a maximum output power density of 1,407.42 mW·m−2 with 4.24 and 10 times higher than that of the non-porous fiber and carbon cloth anode, respectively. The great enhancement is attributed to the rational pore structure which offers the largest surface area while the rich-mesopores well match with the size of electron mediators for a high density of catalytic centers. This work provides thoughtful insights to design of hierarchical porous electrode for high-performance MFCs and other bioelectrochemical system devices.
Li, M.; Zhou, S. Q. Efficacy of Cu(II) as an electron-shuttle mediator for improved bioelectricity generation and Cr(VI) reduction in microbial fuel cells. Bioresour. Technol. 2019, 273, 122–129.
Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.
Zhao, C. E.; Gai, P. P.; Song, R. B.; Chen, Y.; Zhang, J. R.; Zhu, J. J. Nanostructured material-based biofuel cells: Recent advances and future prospects. Chem. Soc. Rev. 2017, 46, 1545–1564.
Lovley, D. R.; Holmes, D. E. Electromicrobiology: The ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol 2022, 20, 5–19.
Schröder, U.; Harnisch, F. Life electric—Nature as a blueprint for the development of microbial electrochemical technologies. Joule 2017, 1, 244–252.
Logan, B. E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690.
Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.
Su, Y. D.; McCuskey, S. R.; Leifert, D.; Moreland, A. S.; Zhou, L. Y.; Llanes, L. C.; Vazquez, R. J.; Sepunaru, L.; Bazan, G. C. A living biotic-abiotic composite that can switch function between current generation and electrochemical energy storage. Adv. Funct. Mater. 2021, 31, 2007351.
Mei, T.; Cong, C.; Huang, Q.; Song, T. S.; Xie, J. J. Effect of 3D carbon electrodes with different pores on solid-phase microbial fuel cell. Energy Fuels 2020, 34, 16765–16771.
Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244.
He, Y. H.; Tan, Q.; Lu, L. L.; Sokolowski, J.; Wu, G. Metal-nitrogen-carbon catalysts for oxygen reduction in PEM fuel cells: Self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2019, 2, 231–251.
Trapero, J. R.; Horcajada, L.; Linares, J. J.; Lobato, J. Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy 2017, 185, 698–707.
Sonawane, J. M.; Yadav, A.; Ghosh, P. C.; Adeloju, S. B. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 2017, 90, 558–576.
Kumar, R.; Singh, L.; Zularisam, A. W. Enhanced oxygen reduction reaction in air-cathode microbial fuel cells using flower-like Co3O4 as an efficient cathode catalyst. Int. J. Hydrogen Energy 2017, 42, 19287–19295.
Birry, L.; Mehta, P.; Jaouen, F.; Dodelet, J. P.; Guiot, S. R.; Tartakovsky, B. Application of iron-based cathode catalysts in a microbial fuel cell. Electrochim. Acta 2011, 56, 1505–1511.
Ben Liew, K.; Daud, W. R. W.; Ghasemi, M.; Leong, J. X.; Lim, S. S.; Ismail, M. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. Int. J. Hydrogen Energy 2014, 39, 4870–4883.
Tao, L.; Xie, M. S.; Chiew, G. G. Y.; Wang, Z. J.; Chen, W. N.; Wang, X. Improving electron trans-inner membrane movements in microbial electrocatalysts. Chem. Commun. 2016, 52, 6292–6295.
Yuan, H. Y.; Hou, Y.; Abu-Reesh, I. M.; Chen, J. H.; He, Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horiz. 2016, 3, 382–401.
Mousavi, M. R.; Ghasemi, S.; Sanaee, Z.; Nejad, Z. G.; Mardanpour, M. M.; Yaghmaei, S.; Ghorbanzadeh, M. Improvement of the microfluidic microbial fuel cell using a nickel nanostructured electrode and microchannel modifications. J. Power Sources 2019, 437, 226891.
Rethinasabapathy, M.; Vilian, A. T. E.; Hwang, S. K.; Kang, S. M.; Cho, Y.; Han, Y. K.; Rhee, J. K.; Huh, Y. S. Cobalt ferrite microspheres as a biocompatible anode for higher power generation in microbial fuel cells. J. Power Sources 2021, 483, 229170.
Zou, L.; Qiao, Y.; Wu, Z. Y.; Wu, X. S.; Xie, J. L.; Yu, S. H.; Guo, J. H.; Li, C. M. Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells. Adv. Energy Mater. 2016, 6, 1501535.
Chen, Q.; Pu, W. H.; Hou, H. J.; Hu, J. P.; Liu, B. C.; Li, J. F.; Cheng, K.; Huang, L.; Yuan, X. Q.; Yang, C. Z. et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells. Bioresour. Technol. 2018, 249, 567–573.
Munjal, M.; Tiwari, B.; Lalwani, S.; Sharma, M.; Singh, G.; Sharma, R. K. An insight of bioelectricity production in mediator less microbial fuel cell using mesoporous Cobalt Ferrite anode. Int. J. Hydrogen. Energy 2020, 45, 12525–12534.
Wang, Y. Q.; Li, B.; Xiang, X. D.; Guo, C. L.; Li, W. S. Carbon nanotubes conjugated mesoporous tungsten trioxide as anode electrocatalyst for microbial fuel cells. ECS J. Solid State Sci. Technol. 2020, 9, 115010.
Yan, Y. X.; Chen, G. R.; She, P. H.; Zhong, G. Y.; Yan, W. F.; Guan, B. Y.; Yamauchi, Y. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Adv. Mater. 2020, 32, 2004654.
Song, Y. E.; Lee, S.; Kim, M.; Na, J. G.; Lee, J.; Lee, J.; Kim, J. R. Metal-free cathodic catalyst with nitrogen- and phosphorus-doped ordered mesoporous carbon (NPOMC) for microbial fuel cells. J. Power Sources 2020, 451, 227816.
Wu, X. S.; Qiao, Y.; Shi, Z. Z.; Tang, W.; Li, C. M. Hierarchically porous n-doped carbon nanotubes/reduced graphene oxide composite for promoting flavin-based interfacial electron transfer in microbial fuel cells. ACS Appl. Mater. Interfaces 2018, 10, 11671–11677.
Wu, X. S.; Shi, Z. Z.; Zou, L.; Li, C. M.; Qiao, Y. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells. J. Power Sources 2018, 378, 119–124.
Zou, L.; Qiao, Y.; Zhong, C. Y.; Li, C. M. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells. Electrochim. Acta 2017, 229, 31–38.
Chong, P.; Erable, B.; Bergel, A. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. Bioresour. Technol. 2019, 289, 121641.
Bian, B.; Shi, D.; Cai, X. B.; Hu, M. J.; Guo, Q. Q.; Zhang, C. H.; Wang, Q.; Sun, A. X.; Yang, J. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 2018, 44, 174–180.
Yu, F.; Wang, C. X.; Ma, J. Capacitance-enhanced 3D graphene anode for microbial fuel cell with long-time electricity generation stability. Electrochim. Acta 2018, 259, 1059–1067.
Xie, X.; Hu, L. B.; Pasta, M.; Wells, G. F.; Kong, D. S.; Criddle, C. S.; Cui, Y. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett. 2011, 11, 291–296.
He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H. et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 2020, 32, 2003577.
Zang, J.; Wang, F. T.; Cheng, Q. Q.; Wang, G. L.; Ma, L. S.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Xie, D. Q.; Yang, H. Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 2020, 8, 3686–3691.
Cheng, Q. Q.; Han, S. B.; Mao, K.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485–493.
Mouhib, M.; Antonucci, A.; Reggente, M.; Amirjani, A.; Gillen, A. J.; Boghossian, A. A. Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res. 2019, 12, 2184–2199.
Mooraj, S.; Qi, Z.; Zhu, C.; Ren, J.; Peng, S. Y.; Liu, L.; Zhang, S. B.; Feng, S.; Kong, F. Y.; Liu, Y. F. et al. 3D printing of metal-based materials for renewable energy applications. Nano Res. 2021, 14, 2105–2132.
Freyman, M. C.; Kou, T. Y.; Wang, S. W.; Li, Y. 3D printing of living bacteria electrode. Nano Res. 2020, 13, 1318–1323.
Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 10583–10587.
Meng, A. Y.; Wu, S.; Cheng, B.; Yu, J. G.; Xu, J. S. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance. J. Mater. Chem. A 2018, 6, 4729–4736.
Yan, J. H.; Dong, K. Q.; Zhang, Y. Y.; Wang, X.; Aboalhassan, A. A.; Yu, J. Y.; Ding, B. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat. Commun. 2019, 10, 5584.
Chen, J. R.; Yan, X. H.; Fu, C. H.; Feng, Y.; Lin, C.; Li, X. L.; Shen, S. Y.; Ke, C. C.; Zhang, J. L. Insight into the rapid degradation behavior of nonprecious metal Fe-N-C electrocatalyst-based proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 2019, 11, 37779–37786.
Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.
Yang, H. P.; Lin, Q.; Wu, Y.; Li, G. D.; Hu, Q.; Chai, X. Y.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 2020, 70, 104454.
Kabir, S.; Medina, S.; Wang, G. X.; Bender, G.; Pylypenko, S.; Neyerlin, K. C. Improving the bulk gas transport of Fe-N-C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications. Nano Energy 2020, 73, 104791.
Wu, X. S.; Qiao, Y.; Guo, C. X.; Shi, Z. Z.; Li, C. M. Nitrogen doping to atomically match reaction sites in microbial fuel cells. Commun. Chem. 2020, 3, 68.
Mukherjee, P.; Saravanan, P. Graphite nanopowder functionalized 3-D acrylamide polymeric anode for enhanced performance of microbial fuel cell. Int. J. Hydrogen Energy 2020, 45, 23411–23421.