AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Characterization and modeling of the temperature-dependent thermal conductivity in sintered porous silicon-aluminum nanomaterials

Danny Kojda1( )Tommy Hofmann1Natalia Gostkowska-Lekner1,2Klaus Habicht1,2
Department Dynamics and Transport in Quantum Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin D-14109, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam D-14476, Germany
Show Author Information

Graphical Abstract

Disentangling porosity from domain size effects results in the intrinsic thermal conductivity in fullagreement with our modified Landauer/Lundstrom model and literature data.

Abstract

Nanostructured silicon and silicon-aluminum compounds are synthesized by a novel synthesis strategy based on spark plasma sintering (SPS) of silicon nanopowder, mesoporous silicon (pSi), and aluminum nanopowder. The interplay of metal-assisted crystallization and inherent porosity is exploited to largely suppress thermal conductivity. Morphology and temperature-dependent thermal conductivity studies allow us to elucidate the impact of porosity and nanostructure on the macroscopic heat transport. Analytic electron microscopy along with quantitative image analysis is applied to characterize the sample morphology in terms of domain size and interpore distance distributions. We demonstrate that nanostructured domains and high porosity can be maintained in densified mesoporous silicon samples. In contrast, strong grain growth is observed for sintered nanopowders under similar sintering conditions. We observe that aluminum agglomerations induce local grain growth, while aluminum diffusion is observed in porous silicon and dispersed nanoparticles. A detailed analysis of the measured thermal conductivity between 300 and 773 K allows us to distinguish the effect of reduced thermal conductivity caused by porosity from the reduction induced by phonon scattering at nanosized domains. With a modified Landauer/Lundstrom approach the relative thermal conductivity and the scattering length are extracted. The relative thermal conductivity confirms the applicability of Kirkpatrick’s effective medium theory. The extracted scattering lengths are in excellent agreement with the harmonic mean of log-normal distributed domain sizes and the interpore distances combined by Matthiessen’s rule.

Electronic Supplementary Material

Download File(s)
12274_2022_4123_MOESM1_ESM.pdf (1.7 MB)

References

1

Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

2

Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2013, 2, 190–212.

3

Qian, X.; Zhou, J. W.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202.

4

Xie, G. F.; Ju, Z. F.; Zhou, K. K.; Wei, X. L.; Guo, Z. X.; Cai, Y. Q.; Zhang, G. Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime. npj Comput. Mater. 2018, 4, 21.

5

He, P. L.; Wu, Y. Constructing of highly porous thermoelectric structures with improved thermoelectric performance. Nano Res. 2021, 14, 3608–3615.

6
Hofmann, T. Nanostructured energy materials: From organic photovoltaic to hybrid thermoelectrics. In Soft Matter and Biomaterials on the Nanoscale; Huber, P., Ed.; World Scientific: Singapore, 2020; pp 435–479.
7

Beretta, D.; Neophytou, N.; Hodges, J. M.; Kanatzidis, M. G.; Narducci, D.; Martin-Gonzalez, M.; Beekman, M.; Balke, B.; Cerretti, G.; Tremel, W. Thermoelectrics: From history, a window to the future. Mater. Sci. Eng. :R:Rep. 2019, 138, 100501.

8

Glassbrenner, C. J.; Slack, G. A. Thermal conductivity of silicon and germanium from 3 °K to the melting point. Phys. Rev. 1964, 134, A1058–A1069.

9

He, R.; Heyn, W.; Thiel, F.; Pérez, N.; Damm, C.; Pohl, D.; Rellinghaus, B.; Reimann, C.; Beier, M.; Friedrich, J. et al. Thermoelectric properties of silicon and recycled silicon sawing waste. J. Mater. 2019, 5, 15–33.

10

Perez-Marín, A. P.; Lopeandía, A. F.; Abad, L.; Ferrando-Villaba, P.; Garcia, G.; Lopez, A. M.; Muñoz-Pascual, F. X.; Rodríguez-Viejo, J. Micropower thermoelectric generator from thin Si membranes. Nano Energy 2014, 4, 73–80.

11

Noyan, I. D.; Dolcet, M.; Salleras, M.; Stranz, A.; Calaza, C.; Gadea, G.; Pacios, M.; Morata, A.; Tarancon, A.; Fonseca, L. All-silicon thermoelectric micro/nanogenerator including a heat exchanger for harvesting applications. J. Power Sources 2019, 413, 125–133.

12

Kessler, V.; Gautam, D.; Hülser, T.; Spree, M.; Theissmann, R.; Winterer, M.; Wiggers, H.; Schierning, G.; Schmechel, R. Thermoelectric properties of nanocrystalline silicon from a scaled-up synthesis plant. Adv. Eng. Mater. 2013, 15, 379–385.

13

Elyamny, S.; Dimaggio, E.; Magagna, S.; Narducci, D.; Pennelli, G. High power thermoelectric generator based on vertical silicon nanowires. Nano Lett. 2020, 20, 4748–4753.

14

Schierning, G.; Theissmann, R.; Stein, N.; Petermann, N.; Becker, A.; Engenhorst, M.; Kessler, V.; Geller, M.; Beckel, A.; Wiggers, H. et al. Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites. J. Appl. Phys. 2011, 110, 113515.

15

Kessler, V.; Dehnen, M.; Chavez, R.; Engenhorst, M.; Stoetzel, J.; Petermann, N.; Hesse, K.; Huelser, T.; Spree, M.; Stiewe, C. et al. Fabrication of high-temperature-stable thermoelectric generator modules based on nanocrystalline silicon. J. Electron. Mater. 2014, 43, 1389–1396.

16

Claudio, T.; Schierning, G.; Theissmann, R.; Wiggers, H.; Schober, H.; Koza, M. M.; Hermann, R. P. Effects of impurities on the lattice dynamics of nanocrystalline silicon for thermoelectric application. J. Mater. Sci. 2013, 48, 2836–2845.

17

Claudio, T.; Stein, N.; Stroppa, D. G.; Klobes, B.; Koza, M. M.; Kudejova, P.; Petermann, N.; Wiggers, H.; Schierning, G.; Hermann, R. P. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties. Phys. Chem. Chem. Phys. 2014, 16, 25701–25709.

18

Petermann, N.; Stötzel, J.; Stein, N.; Kessler, V.; Wiggers, H.; Theissmann, R.; Schierning, G.; Schmechel, R. Thermoelectrics from silicon nanoparticles: The influence of native oxide. Eur. Phys. J. B 2015, 88, 163.

19

Tang, J. Y.; Wang, H. T.; Lee, D. H.; Fardy, M.; Huo, Z. Y.; Russell, T. P.; Yang, P. D. Holey silicon as an efficient thermoelectric material. Nano Lett. 2010, 10, 4279–4283.

20

de Boor, J.; Kim, D. S.; Ao, X.; Becker, M.; Hinsche, N. F.; Mertig, I.; Zahn, P.; Schmidt, V. Thermoelectric properties of porous silicon. Appl. Phys. A 2012, 107, 789–794.

21

Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard III, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.

22

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

23

Maire, J.; Anufriev, R.; Hori, T.; Shiomi, J.; Volz, S.; Nomura, M. Thermal conductivity reduction in silicon fishbone nanowires. Sci. Rep. 2018, 8, 4452.

24

Lee, S.; Kim, K.; Kang, D. H.; Meyyappan, M.; Baek, C. K. Vertical silicon nanowire thermoelectric modules with enhanced thermoelectric properties. Nano Lett. 2019, 19, 747–755.

25

Bracht, H.; Eon, S.; Frieling, R.; Plech, A.; Issenmann, D.; Wolf, D.; Hansen, J. L.; Larsen, A. N.; Ager III, J. W.; Haller, E. E. Thermal conductivity of isotopically controlled silicon nanostructures. New J. Phys. 2014, 16, 015021.

26

Hofmann, T.; Wallacher, D.; Toft-Petersen, R.; Ryll, B.; Reehuis, M.; Habicht, K. Phonons in mesoporous silicon: The influence of nanostructuring on the dispersion in the Debye regime. Microporous Mesoporous Mater. 2017, 243, 263–270.

27

Hofmann, T.; Kojda, D.; Haseeb, H.; Wallacher, D.; Sobolev, O.; Habicht, K. Phonons in highly-crystalline mesoporous silicon: The absence of phonon-softening upon structuring silicon on sub-10 nanometer length scales. Microporous Mesoporous Mater. 2021, 312, 110814.

28

Zong, L. Q.; Zhu, B.; Lu, Z. D.; Tan, Y. L.; Jin, Y.; Liu, N.; Hu, Y.; Gu, S.; Zhu, J.; Cui, Y. Nanopurification of silicon from 84% to 99. 999% purity with a simple and scalable process. Proc. Natl. Acad. Sci. 2015, 112, 13473–13477.

29

Djurdjevic, M. B.; Manasijević, S.; Odanović, Z.; Dolić, N. Calculation of liquidus temperature for aluminum and magnesium alloys applying method of equivalency. Adv. Mater. Sci. Eng. 2013, 2013, 170527.

30

van Gestel, D.; Gordon, I.; Poortmans, J. Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective. Sol. Energy Mater. Sol. Cells 2013, 119, 261–270.

31

Nisar, A.; Zhang, C.; Boesl, B.; Agarwal, A. Unconventional materials processing using spark Plasma sintering. Ceramics 2021, 4, 20–39.

32
Warmuzek, M. Aluminum-silicon Casting Alloys: An Atlas of Microfractographs; ASM International: Materials Park, 2004.
33

Jia, Y. D.; Cao, F. Y.; Ma, P.; Scudino, S.; Eckert, J.; Sun, J. F.; Wang, G. Microstructure and thermal conductivity of hypereutectic Al-high Si produced by casting and spray deposition. J. Mater. Res. 2016, 31, 2948–2955.

34

Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574–588.

35

Shante, V. K. S.; Kirkpatrick, S. An introduction to percolation theory. Adv. Phys. 1971, 20, 325–357.

36

Nan, C. W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 1993, 37, 1–116.

37

Gostkowska-Lekner, N.; Wallacher, D.; Grimm, N.; Habicht, K.; Hofmann, T. A novel electrochemical anodization cell for the synthesis of mesoporous silicon. Rev. Sci. Instrum. 2020, 91, 105113.

38

Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 2014, 16, 830–849.

39

Subramaniam, A. B.; Abkarian, M.; Mahadevan, L.; Stone, H. A. Non-spherical bubbles. Nature 2005, 438, 930.

40
Jones, S. W. Diffusion in silicon [Online]. http://www-eng.lbl.gov/~shuman/NEXT/MATERIALS&COMPONENTS/Xe_damage/Diffusionin%20siliconpdf.pdf (accessed Apr 25, 2008).
41

Montes, J. M.; Cuevas, F. G.; Cintas, J. Porosity effect on the electrical conductivity of sintered powder compacts. Appl. Phys. A 2008, 92, 375–380.

42

Nan, C. W.; Birringer, R.; Clarke, D. R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81, 6692–6699.

43

Chakraborty, D.; Foster, S.; Neophytou, N. Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures. Phys. Rev. B 2018, 98, 115435.

44

de Sousa Oliveira, L. R.; Vargiamidis, V.; Neophytou, N. Modeling thermoelectric performance in nanoporous nanocrystalline silicon. IEEE Trans. Nanotechnol. 2019, 18, 896–903.

45

Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 1959, 113, 1046–1051.

46

Jeong, C.; Datta, S.; Lundstrom, M. Thermal conductivity of bulk and thin-film silicon: A Landauer approach. J. Appl. Phys. 2012, 111, 093708.

47
Pietrak, K.; Wiśniewski, T. S. A review of models for effective thermal conductivity of composite materials. J. Power Technol. 2015, 95, 14–24.
48

Aroutiounian, V. M.; Ghulinyan, M. Z. Electrical conductivity mechanisms in porous silicon. Phys. Stat. Sol. (A) 2003, 197, 462–466.

49

Hori, T.; Shiomi, J.; Dames, C. Effective phonon mean free path in polycrystalline nanostructures. Appl. Phys. Lett. 2015, 106, 171901.

50

Limbrunner, J. F.; Vogel, R. M.; Brown, L. C. Estimation of harmonic mean of a lognormal variable. J. Hydrol. Eng. 2000, 5, 59–66.

51

de Boor, J.; Kim, D. S.; Ao, X.; Hagen, D.; Cojocaru, A.; Föll, H.; Schmidt, V. Temperature and structure size dependence of the thermal conductivity of porous silicon. Europhys. Lett. 2011, 96, 16001.

52

Minnich, A.; Chen, G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 2007, 91, 073105.

Nano Research
Pages 5663-5670
Cite this article:
Kojda D, Hofmann T, Gostkowska-Lekner N, et al. Characterization and modeling of the temperature-dependent thermal conductivity in sintered porous silicon-aluminum nanomaterials. Nano Research, 2022, 15(6): 5663-5670. https://doi.org/10.1007/s12274-022-4123-y
Topics:

929

Views

35

Downloads

1

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 25 October 2021
Revised: 18 December 2021
Accepted: 28 December 2021
Published: 21 March 2022
© The Author(s) 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return