AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fully self-powered instantaneous wireless liquid level sensor system based on triboelectric nanogenerator

Liangquan Xu1Yuzhi Tang1Chi Zhang2,3Fuhai Liu1,4Jinkai Chen1Weipeng Xuan1( )Hao Jin2,3Zhi Ye2,3Zhen Cao2,3Yubo Li2,3Xiaozi Wang2,3Shurong Dong2,3Jikui Luo2,3( )
Ministry of Education Key Laboratory of RF Circuits and Systems, College of Electronics & Information Hangzhou Dianzi University, Hangzhou 310018, China
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
International Joint Innovation Center, Zhejiang University, Haining 314400, China
Special Equipment College, Hangzhou Vocational & Technical College, Hangzhou 310018, China
Show Author Information

Graphical Abstract

A self-powered wireless liquid level sensor system based on a high performance triboelectric nanogenerator (TENG) composed of nylon-66 (PA66) and fluorinated ethylene propylene (FEP) is developed, which is able to transmit liquid level information wirelessly and instantaneously through the magnetic resonance-coupling powered by a triboelectric nanogenerator. The sensor system has a high sensitivity and stability and can detect not only the level but also thetype of liquids.

Abstract

Self-powered sensors are highly sought for wireless sensing applications in space exploration, industries, and environmental monitoring, etc. However, most current self-powered sensor technologies are based on the multiple energy conversion routine: energy collection, rectification, energy storage, and power management before it can be used for sensor systems, leading to exceptionally low energy utilization efficiency and very short periods of wireless sensing operation with majority of information lost. Here, we propose a triboelectric nanogenerator (TENG) based fully self-powered instantaneous and real-time wireless sensor system which does not contain electronic devices and microchips, but the passive components only. An innovative cylindrical capacitive-type liquid level sensor is also proposed and is then integrated into the wireless sensor system for monitoring liquid levels or identifying substance of the liquids. This sensor system can convert pulsed voltage output of the TENG into sinusoidal signal with a resonant frequency containing the sensing information and is transmitted to the receiver in distance in real-time. The maximum transmission distance of the sensor system could reach 1.5 m for a 10 cm diameter magnetic-core coil pair. The wireless sensor system exhibited excellent stability and excellent linearity with a sensitivity of 4.63 kHz/cm, and demonstrated its great application potential for the self-powered liquid level monitoring.

Electronic Supplementary Material

Download File(s)
12274_2022_4125_MOESM1_ESM.pdf (1.4 MB)

References

1

Wang, X. L.; Thompson, D. K.; Marshall, G. A.; Tymstra, C.; Carr, R.; Flannigan, M. D. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Change 2015, 130, 573–586.

2

Cai, W. J.; Borlace, S.; Lengaigne, M.; Van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M. J.; Wu, L. X. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 2014, 4, 111–116.

3

Perera, A. T. D.; Nik, V. M.; Chen, D. L.; Scartezzini, J. L.; Hong, T. Z. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 2020, 5, 150–159.

4

Midilli, A.; Dincer, I.; Ay, M. Green energy strategies for sustainable development. Energy Pol. 2006, 34, 3623–3633.

5

Omer, A. M. Energy, environment and sustainable development. Renewable Sustainable Energy Rev. 2008, 12, 2265–2300.

6

Sanchez Rodriguez, R.; Ürge-Vorsatz, D.; Barau, A. S. Sustainable development goals and climate change adaptation in cities. Nat. Clim. Change 2018, 8, 181–183.

7

Van Aalst, M. K. The impacts of climate change on the risk of natural disasters. Disasters 2006, 30, 5–18.

8

Tamari, S.; Mory, J.; Guerrero-Meza, V. Testing a near-infrared Lidar mounted with a large incidence angle to monitor the water level of turbid reservoirs. ISPRS J. Photogramm. Remote Sens. 2011, 66, S85–S91.

9

Rosolem, J. B.; Dini, D. C.; Penze, R. S.; Floridia, C.; Leonardi, A. A.; Loichate, M. D.; Durelli, A. S. Fiber optic bending sensor for water level monitoring: Development and field test: A review. IEEE Sens. J. 2013, 13, 4113–4120.

10
Grice, S.; Zhang, W.; Sugden, K.; Bennion, I. Liquid level sensor utilising a long period fiber grating. In Proceedings of SPIE 7212, Optical Components and Materials VI, San Jose, California, USA, 2009, 72120C.
11

Kumar, B.; Rajita, G.; Mandal, N. A Review on capacitive-type sensor for measurement of height of liquid level. Meas. Control 2014, 47, 219–224.

12

Radaideh, M. I.; Pigg, C.; Kozlowski, T.; Deng, Y. J.; Qu, A. N. Neural-based time series forecasting of loss of coolant accidents in nuclear power plants. Exp. Syst. Appl. 2020, 160, 113699.

13

Aleksandrov, S. I.; Bol’shov, A. A.; Kornienko, A. V.; Novikov, I. V.; Postnikov, V. V.; Shishov, V. P.; Yurkin, G. V. lnvestigation of β-emission methods of monitoring coolant water level in nuclear power plants. At. Energy 2017, 122, 207–212.

14

Zhu, L.; Alsaab, N.; Cheng, M. M. C.; Chen, P. Y. A zero-power ubiquitous wireless liquid-level sensor based on microfluidic-integrated microstrip Antenna. IEEE J. Radio Frequ. Identificat. 2020, 4, 265–274.

15

Woodard, S. E.; Taylor, B. D. A wireless fluid-level measurement technique. Sens. Actuators, A 2007, 137, 268–278.

16

Alreshaid, A. T.; Hester, J. G.; Su, W.; Fang, Y.; Tentzeris, M. M. Review-Ink-Jet printed wireless liquid and gas sensors for iot, smart Ag and smart city applications. J. Electrochem. Soc. 2018, 165, B407–B413.

17

Loizou, K.; Koutroulis, E. Water level sensing: State of the art review and performance evaluation of a low-cost measurement system. Measurement 2016, 89, 204–214.

18

Kim, J. Y.; Bae, S. E.; Park, T. H.; Paek, S.; Kim, T. J.; Lee, S. J. Wireless simultaneous measurement system for liquid level and density using dynamic bubbler technique: Application to KNO3 molten salts. J. Ind. Eng. Chem. 2020, 82, 57–62.

19

Kuang, K. S. C.; Quek, S. T.; Maalej, M. Remote flood monitoring system based on plastic optical fibres and wireless motes. Sens. Actuators, A 2008, 147, 449–455.

20

Jin, J. X.; Wang, Y.; Jiang, H.; Chen, X. F. Evaluation of microclimatic detection by a wireless sensor network in forest ecosystems. Sci. Rep. 2018, 8, 16433.

21

Lin, R. Z.; Kim, H. J.; Achavananthadith, S.; Kurt, S. A.; Tan, S. C. C.; Yao, H. C.; Tee, B. C. K.; Lee, J. K. W.; Ho, J. S. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 2020, 11, 444.

22

Fuh, Y. K.; Wang, B. S.; Tsai, C. Y. Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci. Rep. 2017, 7, 6759.

23

Jin, L. M.; Tao, J.; Bao, R. R.; Sun, L.; Pan, C. F. Self-powered real-time movement monitoring sensor using triboelectric nanogenerator technology. Sci. Rep. 2017, 7, 10521.

24

Sridhar, V.; Takahata, K. A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sens. Actuators, A 2009, 155, 58–65.

25

Jang, S. D.; Kang, B. W.; Kim, J. Frequency selective surface based passive wireless sensor for structural health monitoring. Smart Mater. Struct. 2013, 22, 025002.

26

Priya, S.; Ryu, J.; Park, C. S.; Oliver, J.; Choi, J. J.; Park, D. S. Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes. Sensors (Basel) 2009, 9, 6362–6384.

27

Li, P.; Wen, Y. M.; Liu, P. G.; Li, X. S.; Jia, C. B. A magnetoelectric energy harvester and management circuit for wireless sensor network. Sens. Actuators, A 2010, 157, 100–106.

28

Vullers, R. J. M.; Schaijk, R. V.; Visser, H. J.; Penders, J.; Hoof, C. V. Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Magaz. 2010, 2, 29–38.

29

Chen, C.; Wen, Z.; Shi, J. H.; Jian, X. H.; Li, P. Y.; Yeow, J. T. W.; Sun, X. H. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143.

30

Lei, H.; Xiao, J.; Chen, Y. F.; Jiang, J. W.; Xu, R. J.; Wen, Z.; Dong, B.; Sun, X. H. Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring. Nano Energy 2022, 91, 106670.

31

Lei, H.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.

32

Zheng, Q.;Zhang, H.;Shi, B.;Xue, X.;Liu, Z.;Jin, Y.;Ma, Y.;Zou, Y.;Wang, X.;An, Z. et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016, 10, 6510–6518.

33

Lu, H. W.; Shi, H. J.; Chen, G. R.; Wu, Y. H.; Zhang, J. W.; Yang, L. Y.; Zhang, Y. J.; Zheng, H. W. High-performance flexible piezoelectric nanogenerator based on specific 3D nano BCZT@Ag hetero-structure design for the application of self-powered wireless sensor system. Small 2021, 17, 2101333.

34

Han, M. D.; Zhang, X. S.; Sun, X. M.; Meng, B.; Liu, W.; Zhang, H. X. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system. Sci. Rep. 2014, 4, 4811.

35

Zhao, X. J.; Wei, G. W.; Li, X. H.; Qin, Y.; Xu, D. D.; Tang, W.; Yin, H. J.; Wei, X. K.; Jia, L. M. Self-powered triboelectric nano vibration accelerometer based wireless sensor system for railway state health monitoring. Nano Energy 2017, 34, 549–555.

36

Xie, X. K.; Chen, Y. F.; Jiang, J. X.; Li, J. Y.; Yang, Y. Q.; Liu, Y. N.; Yang, L.; Tu, X.; Sun, X. H.; Zhao, C. et al. Self-powered gyroscope angle sensor based on resistive matching effect of triboelectric nanogenerator. Adv. Mater. Technol. 2021, 6, 2100797.

37

Zhang, T. T.; Wen, Z.; Lei, H.; Gao, Z. Q.; Chen, Y. F.; Zhang, Y.; Liu, J. Y.; Xie, Y. L.; Sun, X. H. Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 2021, 87, 106215.

38

Yin, W. L.; Xie, Y. D.; Long, J.; Zhao, P. F.; Chen, J. K.; Luo, J. K.; Wang, X. Z.; Dong, S. R. A self-power-transmission and non-contact-reception keyboard based on a novel resonant triboelectric nanogenerator (R-TENG). Nano Energy 2018, 50, 16–24.

39

Chen, J. K.; Xuan, W. P.; Zhao, P. F.; Farooq, U.; Ding, P.; Yin, W. L.; Jin, H.; Wang, X. Z.; Fu, Y. Q.; Dong, S. R. et al. Triboelectric effect based instantaneous self-powered wireless sensing with self-determined identity. Nano Energy 2018, 51, 1–9.

40

Zhang, C.; Chen, J. K.; Xuan, W. P.; Huang, S. Y.; You, B.; Li, W. J.; Sun, L. L.; Jin, H.; Wang, X. Z.; Dong, S. R. et al. Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nat. Commun. 2020, 11, 58.

41

Tang, Y. Z.; Xuan, W. P.; Zhang, C.; Xu, L. Q.; Liu, F. H.; Chen, J. K.; Jin, H.; Ye, Z.; Cao, Z.; Li, Y. B. et al. Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling. Nano Energy 2021, 89, 106429.

42

Xu, L. Q.; Xuan, W. P.; Chen, J. K.; Zhang, C.; Tang, Y. Z.; Huang, X. W.; Li, W. J.; Jin, H.; Dong, S. R.; Yin, W. L. et al. Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator. Nano Energy 2021, 83, 105814.

43
Chen, Y. D.; Jie, Y.; Zhu, J. Q.; Lu, Q. X.; Cheng, Y.; Cao, X.; Wang, Z. L. Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission. Nano Res, in press, https://doi.org/10.1007/s12274-021-3822-0.
44

Zhang, C.; Chen, J. K.; Xuan, W. P.; Huang, S. Y.; Shi, L.; Cao, Z.; Ye, Z.; Li, Y. B.; Wang, X. Z.; Dong, S. R. et al. Triboelectric nanogenerator-enabled fully self-powered instantaneous wireless sensor systems. Nano Energy 2021, 92, 106770.

45

Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

46

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

47

Zhang, X. S.; Han, M. D.; Wang, R. X.; Meng, B.; Zhu, F. Y.; Sun, X. M.; Hu, W.; Wang, W.; Li, Z. H.; Zhang, H. X. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 2014, 4, 123–131.

48

Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.

49

Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J. M.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives. Energy Environ. Sci. 2020, 13, 2657–2683.

50

Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

Nano Research
Pages 5425-5434
Cite this article:
Xu L, Tang Y, Zhang C, et al. Fully self-powered instantaneous wireless liquid level sensor system based on triboelectric nanogenerator. Nano Research, 2022, 15(6): 5425-5434. https://doi.org/10.1007/s12274-022-4125-9
Topics:

1101

Views

16

Crossref

15

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 08 November 2021
Revised: 29 December 2021
Accepted: 30 December 2021
Published: 15 March 2022
© Tsinghua University Press 2022
Return