Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Light-emitting electrochemical cells (LECs) can be fabricated with cost-efficient printing and coating methods, but a current drawback is that the LEC emitter is commonly either a rare-metal complex or an expensive-to-synthesize conjugated polymer. Here, we address this issue through the pioneering employment of metal-free and facile-to-synthesize carbon nanodots (CNDs) as the emitter in functional LEC devices. Circular-shaped (average diameter = 4.4 nm) and hydrophilic CNDs, which exhibit narrow cyan photoluminescence (peak = 485 nm, full width at half maximum = 30 nm) with a high quantum yield of 77% in dilute ethanol solution, were synthesized with a catalyst-free, one-step solvothermal process using low-cost and benign phloroglucinol as the sole starting material. The propensity of the planar CNDs to form emission-quenching aggregates in the solid state was inhibited by the inclusion of a compatible 2,7-bis(diphenylphosphoryl)-9,9’-spirobifluorene host compound, and we demonstrate that such pristine host-guest CND-LECs turn on to a peak luminance of 118 cd·m−2 within 5 s during constant current-density driving at 77 mA·cm−2.
Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.
Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 5116–5118.
Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem. 2015, 127, 5450–5453.
Li, H.; Ye, S.; Guo, J. Q.; Wang, H. B.; Yan, W.; Song, J.; Qu, J. L. Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Res. 2019, 12, 3075–3084.
Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. 2013, 125, 4045–4049.
Baumgärtner, K.; Chincha, A. L. M.; Dreuw, A.; Rominger, F.; Mastalerz, M. A conformationally stable contorted hexabenzoovalene. Angew. Chem., Int. Ed. 2016, 55, 15594–15598.
Mintz, K. J.; Zhou, Y. Q.; Leblanc, R. M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 2019, 11, 4634–4652.
Peng, Z. L.; Han, X.; Li, S. H.; Al-Youbi, A. O.; Bashammakh, A. S.; El-Shahawi, M. S.; Leblanc, R. M. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coordin. Chem. Rev. 2017, 343, 256–277.
Yang, J. X.; Tang, Q. W.; Meng, Q.; Zhang, Z. F.; Li, J. Y.; He, B. L.; Yang, P. Z. Photoelectric conversion beyond sunny days: All-weather carbon quantum dot solar cells. J. Mater. Chem. A 2017, 5, 2143–2150.
Liu, S.; Tian, J. Q.; Wang, L.; Zhang, Y. W.; Qin, X. Y.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Adv. Mater. 2012, 24, 2037–2041.
Hsu, P. C.; Shih, Z. Y.; Lee, C. H.; Chang, H. T. Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem. 2012, 14, 917–920.
Gu, J. J.; Wang, W. N.; Zhang, Q. H.; Meng, Z.; Jia, X. D.; Xi, K. Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis. RSC Adv. 2013, 3, 15589–15591.
Tao, S.; Song, Y. B.; Zhu, S. J.; Shao, J. R.; Yang, B. A new type of polymer carbon dots with high quantum yield: From synthesis to investigation on fluorescence mechanism. Polymer 2017, 116, 472–478.
Schneider, J.; Reckmeier, C. J.; Xiong, Y.; von Seckendorff, M.; Susha, A. S.; Kasák, P.; Rogach, A. L. Molecular fluorescence in citric acid-based carbon dots. J. Phys. Chem. C 2017, 121, 2014–2022.
Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.
Yuan, F. L.; Wang, Y. K.; Sharma, G.; Dong, Y. T.; Zheng, X. P.; Li, P. C.; Johnston, A.; Bappi, G.; Fan, J. Z.; Kung, H. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photonics 2020, 14, 171–176.
Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem. 2016, 128, 7347–7351.
Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.
Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X. et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem. 2017, 129, 6283–6287.
Pan, L. L.; Sun, S.; Zhang, A. D.; Jiang, K.; Zhang, L.; Dong, C. Q.; Huang, Q.; Wu, A. G.; Lin, H. W. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 2015, 27, 7782–7787.
Sun, X. C.; He, J. K.; Meng, Y. T.; Zhang, L. C.; Zhang, S. C.; Ma, X. Y.; Dey, S.; Zhao, J.; Lei, Y. Microwave-assisted ultrafast and facile synthesis of fluorescent carbon nanoparticles from a single precursor: Preparation, characterization and their application for the highly selective detection of explosive picric acid. J. Mater. Chem. A 2016, 4, 4161–4171.
Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent carbogenic dots. Chem. Mater. 2008, 20, 4539–4541.
Hsu, P. C.; Chen, P. C.; Ou, C. M.; Chang, H. Y.; Chang, H. T. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B 2013, 1, 1774–1781.
Wu, W. T.; Zhan, L. Y.; Fan, W. Y.; Song, J. Z.; Li, X. M.; Li, Z. T.; Wang, R. Q.; Zhang, J. Q.; Zheng, J. T.; Wu, M. B. et al. Cu–N dopants boost electron transfer and photooxidation reactions of carbon dots. Angew. Chem. 2015, 127, 6640–6644.
Shamsipur, M.; Barati, A.; Taherpour, A. A.; Jamshidi, M. Resolving the multiple emission centers in carbon dots: From fluorophore molecular states to aromatic domain states and carbon-core states. J. Phys. Chem. Lett. 2018, 9, 4189–4198.
Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface functionalized carbogenic quantum dots. Small 2008, 4, 455–458.
Zhang, J.; Wang, H.; Xiao, Y. M.; Tang, J.; Liang, C. N.; Li, F. Y.; Dong, H. M.; Xu, W. A simple approach for synthesizing of fluorescent carbon quantum dots from tofu wastewater. Nanoscale Res. Lett. 2017, 12, 611.
Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. 2007, 119, 6593–6595.
Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X. J.; Chen, S. W. Nanosized carbon particles from natural gas soot. Chem. Mater. 2009, 21, 2803–2809.
Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.
Wang, F.; Chen, Y. H.; Liu, C. Y.; Ma, D. G. White light-emitting devices based on carbon dots’ electroluminescence. Chem. Commun. 2011, 47, 3502–3504.
Zhang, X. Y.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y. H.; Wang, P.; Zhang, T. Q.; Zhao, Y.; Zhang, H. Z. et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 2013, 7, 11234–11241.
Paulo-Mirasol, S.; Martínez-Ferrero, E.; Palomares, E. Direct white light emission from carbon nanodots (C-dots) in solution processed light emitting diodes. Nanoscale 2019, 11, 11315–11321.
Xu, J. C.; Miao, Y. Q.; Zheng, J. X.; Yang, Y. Z.; Liu, X. G. Ultrahigh brightness carbon dot-based blue electroluminescent LEDs by host-guest energy transfer emission mechanism. Adv. Opt. Mater. 2018, 6, 1800181.
Wang, X.; Zhang, X. Y.; Gu, X. Q.; Nie, H. D.; Zhu, M. M.; Wang, B.; Gao, J.; Tao, Y. C.; Zhu, Y. Z.; Huang, H. et al. A bright and stable violet carbon dot light-emitting diode. Adv. Opt. Mater. 2020, 8, 2000239.
Xu, J. C.; Miao, Y. Q.; Zheng, J. X.; Wang, H.; Yang, Y. Z.; Liu, X. G. Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale 2018, 10, 11211–11221.
Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.
Jia, H. R.; Wang, Z. B.; Yuan, T.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots. Adv. Sci. 2019, 6, 1900397.
Tang, S.; Sandström, A.; Lundberg, P.; Lanz, T.; Larsen, C.; van Reenen, S.; Kemerink, M.; Edman, L. Design rules for light-emitting electrochemical cells delivering bright luminance at 27.5 percent external quantum efficiency. Nat. Commun. 2017, 8, 1190.
Tang, S.; Edman, L. Light-emitting electrochemical cells: A review on recent progress. Topics Curr. Chem. 2016, 374, 40.
Pei, Q. B.; Heeger, A. J. Operating mechanism of light-emitting electrochemical cells. Nat. Mater. 2008, 7, 167.
Asadpoordarvish, A.; Sandström, A.; Larsen, C.; Bollström, R.; Toivakka, M.; Österbacka, R.; Edman, L. Light-emitting paper. Adv. Funct. Mater. 2015, 25, 3238–3245.
Auroux, E.; Sandström, A.; Larsen, C.; Lundberg, P.; Wågberg, T.; Edman, L. Solution-based fabrication of the top electrode in light-emitting electrochemical cells. Org. Electron. 2020, 84, 105812.
Matyba, P.; Yamaguchi, H.; Chhowalla, M.; Robinson, N. D.; Edman, L. Flexible and metal-free light-emitting electrochemical cells based on graphene and PEDOT-PSS as the electrode materials. ACS Nano 2011, 5, 574–580.
Sandström, A.; Edman, L. Towards high-throughput coating and printing of light-emitting electrochemical cells: A review and cost analysis of current and future methods. Energy Technol. 2015, 3, 329–339.
Costa, R. D.; Orti, E.; Bolink, H. J.; Graber, S.; Housecroft, C. E.; Constable, E. C. Intramolecular π-stacking in a phenylpyrazole-based iridium complex and its use in light-emitting electrochemical cells. J. Am. Chem. Soc. 2010, 132, 5978–5980.
Graber, S.; Doyle, K.; Neuburger, M.; Housecroft, C. E.; Constable, E. C.; Costa, R. D.; Orti, E.; Repetto, D.; Bolink, H. J. A supramolecularly-caged ionic iridium(III) complex yielding bright and very stable solid-state light-emitting electrochemical cells. J. Am. Chem. Soc. 2008, 130, 14944–14945.
Chen, G. Y.; Chang, B. R.; Shih, T. A.; Lin, C. H.; Lo, C. L.; Chen, Y. Z.; Liu, Y. X.; Li, Y. R.; Guo, J. T.; Lu, C. W. et al. Cationic IrIII emitters with near-infrared emission beyond 800 nm and their use in light-emitting electrochemical cells. Chem. -Eur. J. 2019, 25, 5489–5497.
Pei, Q. B.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. Polymer light-emitting electrochemical cells. Science 1995, 269, 1086–1088.
Bai, R. B.; Meng, X. W.; Wang, X. X.; He, L. Color-stable, efficient, and bright blue light-emitting electrochemical cell using ionic exciplex host. Adv. Funct. Mater. 2021, 31, 2007167.
Salehi, A.; Chen, Y.; Fu, X. Y.; Peng, C.; So, F. Manipulating refractive index in organic light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 9595–9601.
Aygüler, M. F.; Puscher, B. M. D.; Tong, Y.; Bein, T.; Urban, A. S.; Costa, R. D.; Docampo, P. Light-emitting electrochemical cells based on inorganic metal halide perovskite nanocrystals. J. Phys. D:Appl. Phys. 2018, 51, 334001.
Aygüler, M. F.; Weber, M. D.; Puscher, B. M. D.; Medina, D. D.; Docampo, P.; Costa, R. D. Light-emitting electrochemical cells based on hybrid lead halide perovskite nanoparticles. J. Phys. Chem. C 2015, 119, 12047–12054.
Frohleiks, J.; Gellner, S.; Wepfer, S.; Bacher, G.; Nannen, E. Design and realization of white quantum dot light-emitting electrochemical cell hybrid devices. ACS Appl. Mater. Interfaces 2018, 10, 42637–42646.
Nannen, E.; Frohleiks, J.; Gellner, S. Light-emitting electrochemical cells based on color-tunable inorganic colloidal quantum dots. Adv. Funct. Mater. 2020, 30, 1907349.
Gets, D.; Alahbakhshi, M.; Mishra, A.; Haroldson, R.; Papadimitratos, A.; Ishteev, A.; Saranin, D.; Anoshkin, S.; Pushkarev, A.; Danilovskiy, E. et al. Reconfigurable perovskite LEC: Effects of ionic additives and dual function devices. Adv. Opt. Mater. 2021, 9, 2001715.
Alahbakhshi, M.; Mishra, A.; Haroldson, R.; Ishteev, A.; Moon, J.; Gu, Q.; Slinker, J. D.; Zakhidov, A. A. Bright and effectual perovskite light-emitting electrochemical cells leveraging ionic additives. ACS Energy Lett. 2019, 4, 2922–2928.
Fresta, E.; Dosso, J.; Cabanillas-Gonzalez, J.; Bonifazi, D.; Costa, R. D. Revealing the impact of heat generation using nanographene-based light-emitting electrochemical cells. ACS Appl. Mater. Interfaces 2020, 12, 28426–28434.
Fresta, E.; Baumgärtner, K.; Cabanillas-Gonzalez, J.; Mastalerz, M.; Costa, R. D. Bright, stable, and efficient red light-emitting electrochemical cells using contorted nanographenes. Nanoscale Horiz. 2020, 5, 473–480.
Larsen, C.; Lundberg, P.; Tang, S.; Ràfols-Ribé, J.; Sandström, A.; Lindh, E. M.; Wang, J.; Edman, L. A tool for identifying green solvents for printed electronics. Nat. Commun. 2021, 12, 4510.
Abdel-Ghany, S. E.; Day, I.; Heuberger, A. L.; Broeckling, C. D.; Reddy, A. S. N. Production of phloroglucinol, a platform chemical, in Arabidopsis using a bacterial gene. Sci. Rep. 2016, 6, 38483.
Jégou, C.; Kervarec, N.; Cérantola, S.; Bihannic, I.; Stiger-Pouvreau, V. NMR use to quantify phlorotannins: The case of Cystoseira tamariscifolia, a phloroglucinol-producing brown macroalga in Brittany (France). Talanta 2015, 135, 1–6.
Singh, I. P.; Sidana, J.; Bansal, P.; Foley, W. J. Phloroglucinol compounds of therapeutic interest: Global patent and technology status. Expert Opin. Ther. Pat. 2009, 19, 847–866.
Yuan, S.; Zhang, R. B.; Cao, Y. J.; Guo, J.; Xian, M.; Liu, W. New expression system to increase the yield of phloroglucinol. Biotechnol. Biotec. Eq. 2020, 34, 405–412.
Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2019, 12, 1669–1674.
Liu, Y. F.; Tang, X. S.; Deng, M.; Cao, Y. L.; Li, Y. J.; Zheng, H.; Li, F. H.; Yan, F. B.; Lan, T. Y.; Shi, L. L. et al. Nitrogen doped graphene quantum dots as a fluorescent probe for mercury (II) ions. Microchim. Acta 2019, 186, 140.
Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.
Kusumaningsih, T.; Firdaus, M.; Wartono, M. W.; Artanti, A. N.; Handayani, D. S.; Putro, A. E. Ethyl-2-(3,5-Dihidroxyfenol): Phloroglucinol derivatives as potential anticancer material. IOP Conf. Ser. :Mater. Sci. Eng. 2016, 107, 012059.
Wang, J.; Zhao, Y. F.; Dou, C. D.; Sun, H.; Xu, P.; Ye, K. Q.; Zhang, J. Y.; Jiang, S. M.; Li, F.; Wang, Y. Alkyl and Dendron substituted quinacridones: Synthesis, structures, and luminescent properties. J. Phys. Chem. B 2007, 111, 5082–5089.
Tang, S.; Murto, P.; Wang, J.; Larsen, C.; Andersson, M. R.; Wang, E. G.; Edman, L. On the design of host-guest light-emitting electrochemical cells: Should the guest be physically blended or chemically incorporated into the host for efficient emission? Adv. Opt. Mater. 2019, 7, 1900451.
Tang, S.; Larsen, C.; Ràfols-Ribé, J.; Wang, J.; Edman, L. An amorphous spirobifluorene-phosphine-oxide compound as the balanced n-type host in bright and efficient light-emitting electrochemical cells with improved stability. Adv. Opt. Mater. 2021, 9, 2002105.