Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Water dissociation process is generally regarded as the rate-limiting step for alkaline hydrogen evolution reaction (HER), and severely inhibits the catalytic efficiency of Pt based catalysts. To overcome this problem, the in-situ constructed interfaces of Pt-Co alloy and amorphous cobalt oxide (CoOx) on the carbon powder are designed. The amorphous CoOx at Pt-Co/CoOx interfaces not only provide active sites for water dissociation to facilitate Volmer step, but also produce the strong electronic transfer with Pt-Co. Accordingly, the obtained interfacial catalysts exhibit outstanding alkaline HER performance with a Tafel slope of 29.3 mV·dec−1 and an ultralow overpotential of only 28 mV at 10 mA·cm−2. Density functional theory (DFT) reveals that the electronic accumulation on the interfacial Co atom in Pt-Co/CoOx constructing the novel active site for water dissociation. Compared to the Pt-Co, all of the energy barriers for water adsorption, water dissociation and hydrogen adsorption/desorption are reduced in Pt-Co/CoOx interfaces, suggesting a boosted HER kinetics for alkaline HER.
Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.
He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.
Zhang, B.; Zhang, L. S.; Tan, Q. Y.; Wang, J. S.; Liu, J.; Wan, H. Z.; Miao, L.; Jiang, J. J. Simultaneous interfacial chemistry and inner Helmholtz plane regulation for superior alkaline hydrogen evolution. Energy Environ. Sci. 2020, 13, 3007–3013.
Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.
Lin, C. X.; Huang, Z. Q.; Zhang, Z. Y.; Zeng, T.; Chen, R. Z.; Tan, Y. Y.; Wu, W.; Mu, S. C.; Cheng, N. C. Structurally ordered Pt3Co nanoparticles anchored on n-doped graphene for highly efficient hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2020, 8, 16938–16945.
Li, Z.; Feng, Y.; Liang, Y. L.; Cheng, C. Q.; Dong, C. K.; Liu, H.; Du, X. W. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 2020, 32, 1908521.
Pu, Z. H.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Mu, S. C.; Zhao, W. Y.; Su, F. M.; Zhang, G. X.; Liao, S. J. et al. Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Lett. 2020, 12, 21.
Tan, Y. S.; Xie, R. K.; Zhao, S. Y.; Lu, X. K.; Liu, L. X.; Zhao, F. J.; Li, C. Z.; Jiang, H.; Chai, G. L.; Brett, D. J. L. et al. Facile fabrication of robust hydrogen evolution electrodes under high current densities via Pt@Cu interactions. Adv. Funct. Mater. 2021, 31, 2105579.
Lu, J. J.; Zhang, L. S.; Jing, S. Y.; Luo, L.; Yin, S. B. Remarkably efficient PtRh alloyed with nanoscale WC for hydrogen evolution in alkaline solution. Int. J. Hydrogen Energy 2017, 42, 5993–5999.
Cai, H. R.; Xiong, L. F.; Wang, B.; Zhu, D. L.; Hao, H. J.; Yu, X. J.; Li, C.; Yang, S. C. N-doped CNT as electron transport promoter by bridging CoP and carbon cloth toward enhanced alkaline hydrogen evolution. Chem. Eng. J. 2022, 430, 132824.
Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.
Lu, Z. J.; Cao, Y. L.; Xie, J.; Hu, J. D.; Wang, K.; Jia, D. Z. Construction of Co2P/CoP@Co@NCNT rich-interface to synergistically promote overall water splitting. Chem. Eng. J. 2022, 430, 132877.
Chen, Q.; Wei, B.; Wei, Y.; Zhai, P. B.; Liu, W.; Gu, X. K.; Yang, Z. L.; Zuo, J. H.; Zhang, R. F.; Gong, Y. J. Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte. Appl. Catal. B Environ. 2022, 301, 120754.
Lee, H.; Lim, J.; Lee, C.; Back, S.; An, K.; Shin, J. W.; Ryoo, R.; Jung, Y.; Park, J. Y. Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles. Nat. Commun. 2018, 9, 2235.
Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.
Wang, H. Q.; Zhang, W. J.; Zhang, X. W.; Hu, S. X.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021, 14, 4857–4864.
Zhang, C. T.; Liu, Q.; Wang, P. Y.; Zhu, J. W.; Chen, D.; Yang, Y.; Zhao, Y. F.; Pu, Z. H.; Mu, S. C. Molybdenum carbide-PtCu nanoalloy heterostructures on MOF-derived carbon toward efficient hydrogen evolution. Small 2021, 17, 2104241.
Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.
Wang, Z. Q.; Ren, X.; Luo, Y. L.; Wang, L.; Cui, G. W.; Xie, F. Y.; Wang, H. J.; Xie, Y.; Sun, X. P. An ultrafine platinum-cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale 2018, 10, 12302–12307.
Xu, W. J.; Chang, J. F.; Cheng, Y. G.; Liu, H. Q.; Li, J. F.; Ai, Y. J.; Hu, Z. A.; Zhang, X. Y.; Wang, Y. M.; Liang, Q. L. et al. A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Res. 2022, 15, 965–971.
Wang, P. T.; Shao, Q.; Guo, J.; Bu, L. Z.; Huang, X. Q. Promoting alkaline hydrogen evolution catalysis on p-decorated, Ni-segregated Pt-Ni-P nanowires via a synergetic cascade route. Chem. Mater. 2020, 32, 3144–3149.
Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.
Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.
Qin, R.; Hou, J. G.; Xu, C. X.; Yang, H. X.; Zhou, Q. X.; Chen, Z. Z.; Liu, H. Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Nano Res. 2020, 13, 2950–2957.
Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.
Yu, X. W.; dos Santos, E. C.; White, J.; Salazar-Alvarez, G.; Pettersson, L. G. M.; Cornell, A.; Johnsson, M. Electrocatalytic glycerol oxidation with concurrent hydrogen evolution utilizing an efficient MoOx/Pt catalyst. Small 2021, 17, 2104288.
Zhou, M.; Li, H. F.; Long, A. C.; Zhou, B.; Lu, F.; Zhang, F. C.; Zhan, F.; Zhang, Z. X.; Xie, W. W.; Zeng, X. H. et al. Modulating 3d orbitals of Ni atoms on Ni-Pt edge sites enables highly-efficient alkaline hydrogen evolution. Adv. Energy Mater. 2021, 11, 2101789.
Zhang, J. K.; Gao, Z.; Wang, S.; Wang, G. F.; Gao, X. F.; Zhang, B. Y.; Xing, S. F.; Zhao, S. C.; Qin, Y. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nat. Commun. 2019, 10, 4166.
Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B Environ. 2020, 276, 119165.
Xu, Q. L.; Yu, T. Q.; Chen, J. L.; Qian, G. F.; Song, H. N.; Luo, L.; Chen, Y. L.; Liu, T. Y.; Wang, Y. Z.; Yin, S. B. Coupling interface constructions of FeNi3-MoO2 heterostructures for efficient urea oxidation and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 16355–16363.
Zhang, W.; Jiang, X.; Dong, Z. M.; Wang, J.; Zhang, N.; Liu, J.; Xu, G. R.; Wang, L. Porous Pd/NiFeOx nanosheets enhance the pH-universal overall water splitting. Adv. Funct. Mater. 2021, 31, 2107181.
Zeng, J. S.; Zhang, L.; Zhou, Q.; Liao, L. L.; Qi, Y.; Zhou, H. Q.; Li, D. Y.; Cai, F. M.; Wang, H.; Tang, D. S. et al. Boosting alkaline hydrogen and oxygen evolution kinetic process of tungsten disulfide-based heterostructures by multi-site engineering. Small 2022, 18, 2104624.
Lim, J.; Jung, J. W.; Kim, N. Y.; Lee, G. Y.; Lee, H. J.; Lee, Y.; Choi, D. S.; Yoon, K. R.; Kim, Y. H.; Kim, I. D. et al. O. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn–air battery. Energy Storage Mater. 2020, 32, 517–524.
Yang, Y. M.; Ji, Y. J.; Li, G. Y.; Li, Y. Y.; Jia, B. H.; Yan, J. Q.; Ma, T. Y.; Liu, S. Z. F. IrOx@In2O3 heterojunction from individually crystallized oxides for weak-light-promoted electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2021, 60, 26790–26797.
Yan, Y.; Liang, S.; Wang, X.; Zhang, M. Y.; Hao, S. M.; Cui, X.; Li, Z.; Lin, Z. Q. Robust wrinkled MoS2/N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc–air batteries. Proc. Natl. Acad. Sci. USA 2021, 118, e2110036118.
Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.
Wu, D. L.; Chen, D.; Zhu, J. W.; Mu, S. C. Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 2021, 17, 2102777.
Xu, L.; Tian, Y. H.; Deng, D. J.; Li, H. P.; Zhang, D.; Qian, J. C.; Wang, S.; Zhang, J. M.; Li, H. N.; Sun, S. H. Cu nanoclusters/FeN4 amorphous composites with dual active sites in N-doped graphene for high-performance Zn–air batteries. ACS Appl. Mater. Interfaces 2020, 12, 31340–31350.
Wu, M. J.; Wei, Q. L.; Zhang, G. X.; Qiao, J. L.; Wu, M. X.; Zhang, J. H.; Gong, Q. J.; Sun, S. H. Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc–air batteries. Adv. Energy Mater. 2018, 8, 1801836.
Hua, B.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Yan, N.; Chen, J.; Thundat, T.; Li, J.; Luo, J. L. A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247–254.
Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779.
Yu, T. Q.; Xu, Q. L.; Qian, G. F.; Chen, J. L.; Zhang, H.; Luo, L.; Yin, S. B. Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustainable Chem. Eng. 2020, 8, 17520–17526.
Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; Xin, Q. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal. Today 2004, 93–95, 665–670.
Jiang, L. H.; Zhou, Z. H.; Li, W. Z.; Zhou, W. J.; Song, S. Q.; Li, H. Q.; Sun, G. Q.; Xin, Q. Effects of treatment in different atmosphere on Pt3Sn/C electrocatalysts for ethanol electro-oxidation. Energy Fuels 2004, 18, 866–871.
Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.
Jang, S. W.; Dutta, S.; Kumar, A.; Hong, Y. R.; Kang, H.; Lee, S.; Ryu, S.; Choi, W.; Lee, I. S. Holey Pt nanosheets on NiFe-hydroxide laminates: Synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano 2020, 14, 10578–10588.
Wang, M. J.; Xu, Y.; Peng, C. K.; Chen, S. Y.; Lin, Y. G.; Hu, Z. W.; Sun, L.; Ding, S. Y.; Pao, C. W.; Shao, Q. et al. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal–organic frameworks for enhanced hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 16512–16518.
Chen, W. S; Xue, J.; Bao, Y. F.; Feng, L. G. Surface engineering of nano-ceria facet dependent coupling effect on Pt nanocrystals for electro-catalysis of methanol oxidation reaction. Chem. Eng. J. 2020, 381, 122752.
Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.
Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2021, 2107597.
Hu, S.; Goenaga, G.; Melton, C.; Zawodzinski, T. A.; Mukherjee, D. PtCo/CoOx nanocomposites: Bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Appl. Catal. B Environ. 2016, 182, 286–296.
Lu, Z. J.; Xie, J.; Hu, J. D.; Wang, K.; Cao, Y. L. In situ replacement synthesis of Co@NCNT encapsulated CoPt3@Co2P heterojunction boosting methanol oxidation and hydrogen evolution. Small 2021, 17, 2104656.
Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.
Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal–organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.
Zhang, L. J.; Jang, H.; Wang, Y.; Li, Z. J.; Zhang, W.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Exploring the dominant role of atomic- and nano-ruthenium as active sites for hydrogen evolution reaction in both acidic and alkaline media. Adv. Sci. 2021, 8, 2004516.