AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly electrically conductive graphene papers via catalytic graphitization

Huanqin Peng1Xin Ming1Kai Pang1Yanru Chen1Ji Zhou2Zhen Xu1Yingjun Liu1,3( )Chao Gao1( )
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
Beijing Institute of Space Mechanics & Electricity, Haidian District, Beijing Friendship Road 104, Beijing 100094, China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
Show Author Information

Graphical Abstract

Catalytic graphitization is an efficient approach to decrease the graphitization temperature anddramatically reduce the production cost of graphene papers, making it possible to widely apply ingraphene-based flexible electronics, electromagnetic interference shielding and electrodes.

Abstract

The highly electrically conductive graphene papers prepared from graphene oxide have shown promising perspectives in flexible electronics, electromagnetic interference (EMI) shielding, and electrodes. To achieve high electrical conductivity, the graphene oxide precursor usually needs to be graphitized at extremely high temperature (~ 2,800 °C), which severely increases the energy consumption and production costs. Here, we report an efficient catalytic graphitization approach to fabricate highly conductive graphene papers at lower annealing temperature. The graphene papers with boron catalyst annealed at 2,000 °C show a high conductivity of ~ 3,400 S·cm–1, about 47% higher than pure graphene papers. Boron catalyst facilitates the recovery of structural defects and improves the degree of graphitization by 80%. We further study the catalytic effect of boron on the graphitization behavior of graphene oxide. The results show that the activation energy of the catalytic graphitization process is as low as 80.1 kJ·mol–1 in the temperature ranges studied. This effective strategy of catalytic graphitization should also be helpful in the fabrication of other kinds of highly conductive graphene macroscopic materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4130_MOESM1_ESM.pdf (1,015.6 KB)

References

1

Liu, Y. J.; Yang, M. C.; Pang, K.; Wang, F.; Xu, Z.; Gao, W. W.; Gao, C. Environmentally stable macroscopic graphene films with specific electrical conductivity exceeding metals. Carbon 2020, 156, 205–211.

2

Yamada, Y.; Chung, D. D. L. Epoxy-based carbon films with high electrical conductivity attached to an alumina substrate. Carbon 2008, 46, 1798–1801.

3

Liu, Y. J.; Li, P.; Wang, F.; Fang, W. Z.; Xu, Z.; Gao, W. W.; Gao, C. Rapid roll-to-roll production of graphene films using intensive joule heating. Carbon 2019, 155, 462–468.

4

Lin, S. F.; Ju, S.; Zhang, J. W.; Shi, G.; He, Y. L.; Jiang, D. Z. Ultrathin flexible graphene films with high thermal conductivity and excellent Emi shielding performance using large-sized graphene oxide flakes. RSC Adv. 2019, 9, 1419–1427.

5

Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.

6

Zhang, M.; Wang, Y. L.; Huang, L.; Xu, Z. P.; Li, C.; Shi, G. Q. Multifunctional pristine chemically modified graphene films as strong as stainless steel. Adv. Mater. 2015, 27, 6708–6713.

7

Pang, K.; Liu, X. T.; Liu, Y. J.; Chen, Y. R.; Xu, Z.; Shen, Y.; Gao, C. Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding. Carbon 2021, 179, 202–208.

8

Xin, G. Q.; Sun, H. T.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 2014, 26, 4521–4526.

9

Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.

10
Geim, A. K.; Novoselov, K. S. The rise of graphene. In Nanoscience and Technology. Rodgers, P., Ed.; Co-Published with Macmillan Publishers Ltd: London, 2009; pp 11–19.
11

Liu, Y. J.; Xu, Z.; Zhan, J. M.; Li, P. G.; Gao, C. Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 2016, 28, 7941–7947.

12

Song, R. G.; Wang, Q. L.; Mao, B. Y.; Wang, Z.; Tang, D. L.; Zhang, B.; Zhang, J. W.; Liu, C. G.; He, D. P.; Wu, Z. et al. Flexible graphite films with high conductivity for radio-frequency antennas. Carbon 2018, 130, 164–169.

13

Abakumov, A. A.; Bychko, I. B.; Nikolenko, A. S.; Strizhak, P. E. Dependence of structure of multilayer graphene oxide on degree of graphitization of initial graphite. Theoret. Exp. Chem. 2018, 54, 186–192.

14

Bahl, O. P.; Mathur, R. B.; Gupta, D. A novel method of improving the Young's modulus of carbon fibres. Fibre Sci. Technol. 1982, 17, 149–153.

15

Zha, Z. T.; Zhang, Z.; Xiang, P.; Zhu, H. Y.; Zhou, B. M.; Sun, Z. L.; Zhou, S. One-step preparation of eggplant-derived hierarchical porous graphitic biochar as efficient oxygen reduction catalyst in microbial fuel cells. RSC Adv. 2021, 11, 1077–1085.

16

Destyorini, F.; Yudianti, R.; Irmawati, Y.; Hardiansyah, A.; Hsu, Y. I.; Uyama, H. Temperature driven structural transition in the nickel-based catalytic graphitization of coconut coir. Diam. Relat. Mater. 2021, 117, 108443.

17

Chen, L.; Fang, T.; Song, C. Y.; Li, H. L.; Hu, J. Catalytic graphitization of boron on the fabrication of high-performance carbon papers for gas diffusion layers in PEMFCs. Catal. Commun. 2021, 157, 106332.

18

Jones, L. E.; Thrower, P. A. Influence of boron on carbon fiber microstructure, physical properties, and oxidation behavior. Carbon 1991, 29, 251–269.

19

Wen, Y.; Lu, Y. G.; Xiao, H.; Qin, X. Y. Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers: Mechanism and mechanical properties. Mater. Des. 2012, 36, 728–734.

20

Burgess, J. S.; Acharya, C. K.; Lizarazo, J.; Yancey, N.; Flowers, B.; Kwon, G.; Klein, T.; Weaver, M.; Lane, A. M.; Heath Turner, C. et al. Boron-doped carbon powders formed at 1,000 °C and one atmosphere. Carbon 2008, 46, 1711–1717.

21

De Silva, K. K. H.; Huang, H. H.; Joshi, R.; Yoshimura, M. Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide. Carbon 2020, 166, 74–90.

22

Zhang, F. Y.; He, D. M.; Ge, S. T.; Cai, Q. Y. Effect of fiber splitting on the catalytic graphitization of electroless Ni-B-coated polyacrylonitrile-based carbon fibers. Surf. Coat. Technol. 2008, 203, 99–103.

23

Agrawal, A.; Yinnon, H.; Uhlmann, D. R.; Pepper, R. T.; Desper, C. R. Boron modification of carbon fibres. J. Mater. Sci. 1986, 21, 3455–3466.

24

Chen, H. J.; Yang, J. X.; Shuai, Q.; Li, J.; Ouyang, Q.; Zhang, S. In-situ doping B4C nanoparticles in pan precursors for preparing high modulus pan-based carbon fibers with boron catalytic graphitization. Compos. Sci. Technol. 2020, 200, 108455.

25

Cermignani, W.; Paulson, T. E.; Onneby, C.; Pantano, C. G. Synthesis and characterization of boron-doped carbons. Carbon 1995, 33, 367–374.

26

Kim, E.; Oh, I.; Kwak, J. Atomic structure of highly ordered pyrolytic graphite doped with boron. Electrochem. Commun. 2001, 3, 608–612.

27

Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund N. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6, 2667–2673.

28

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

29

Ni, Z.; Wang, Y.; Yu, T.; Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.

30

Kim, Y. A.; Fujisawa, K.; Muramatsu, H.; Hayashi, T.; Endo, M.; Fujimori, T.; Kaneko, K.; Terrones, M.; Behrends, J.; Eckmann, A. et al. Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 2012, 6, 6293–6300.

31

Li, X. Y.; Wang, X. P.; Xiao, G. Z.; Zhu, Y. Identifying active sites of boron, nitrogen co-doped carbon materials for the oxygen reduction reaction to hydrogen peroxide. J. Colloid Interf. Sci. 2021, 602, 799–809.

32

Ōya, A.; Yamashita, R.; Ōtani, S. Catalytic graphitization of carbons by borons. Fuel 1979, 58, 495–500.

33

Feret, F. R. Determination of the crystallinity of calcined and graphitic cokes by X-ray diffraction. Analyst 1998, 123, 595–600.

34

Yokokawa, C.; Hosokawa, K.; Takegami, Y. A kinetic study of catalytic graphitization of hard carbon. Carbon 1967, 5, 475–480.

35

Murty, H. N.; Biederman, D. L.; Heintz, E. A. Kinetics of graphitization-I. Activation energies. Carbon 1969, 7, 667–681.

36

Noda, T.; Inagaki, M.; Sekiya, T. Kinetic studies of the graphitization process—I Effect of ambient gas phase on the rate of graphitization. Carbon 1965, 3, 175–180.

37

Murty, H. N.; Biederman, D. L.; Heintz, E. A. Apparent catalysis of graphitization. 3. Effect of boron. Fuel 1977, 56, 305–312.

38

Rozada, R.; Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Res. 2013, 6, 216–233.

39

Shen, B.; Zhai, W. T.; Zheng, W. G. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient emi shielding. Adv. Funct. Mater. 2014, 24, 4542–4548.

40

Ghosh, T.; Biswas, C.; Oh, J.; Arabale, G.; Hwang, T.; Luong, N. D.; Jin, M. H.; Lee, Y. H.; Nam, J. D. Solution-processed graphite membrane from reassembled graphene oxide. Chem. Mater. 2012, 24, 594–599.

41

Ding, J. H.; Ur Rahman, O.; Zhao, H. R.; Peng, W. J.; Dou, H. M.; Chen, H.; Yu, H. B. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotechnology 2017, 28, 39LT01.

42

Chen, Y. N.; Fu, K.; Zhu, S. Z.; Luo, W.; Wang, Y. B.; Li, Y. J.; Hitz, E.; Yao, Y. G.; Dai, J. Q.; Wan, J. et al. Reduced graphene oxide films with ultrahigh conductivity as li-ion battery current collectors. Nano Lett. 2016, 16, 3616–3623.

43

Zhou, E. Z.; Xi, J. B.; Guo, Y.; Liu, Y. J.; Xu, Z.; Peng, L.; Gao, W. W.; Ying, J.; Chen, Z. C.; Gao, C. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 2018, 133, 316–322.

44

Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1–186.

45

Chen, S. H.; Nguyen, Y.; Chen, T. W.; Yen, Z. L.; Hofmann, M.; Hsieh, Y. P. Neutral scatterers dominate carrier transport in CVD graphene with ionic impurities. Carbon 2020, 165, 163–168.

46

Iwashita, N.; Inagaki, M.; Hishiyama, Y. Relations between degree of graphitization and galvanomagnetic properties of pyrolytic carbons and cokes. Carbon 1997, 35, 1073–1077.

47

Wei, Q. W.; Pei, S. F.; Qian, X. T.; Liu, H. P.; Liu, Z. B.; Zhang, W. M.; Zhou, T. Y.; Zhang, Z. C.; Zhang, X. F.; Cheng, H. M. et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 2020, 32, 1907411.

48

Wan, S. J.; Chen, Y.; Fang, S. L.; Wang, S. J.; Xu, Z. P.; Jiang, L.; Baughman, R. H.; Cheng, Q. F. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 2021, 20, 624–631.

Nano Research
Pages 4902-4908
Cite this article:
Peng H, Ming X, Pang K, et al. Highly electrically conductive graphene papers via catalytic graphitization. Nano Research, 2022, 15(6): 4902-4908. https://doi.org/10.1007/s12274-022-4130-z
Topics:

1305

Views

28

Crossref

25

Web of Science

27

Scopus

1

CSCD

Altmetrics

Received: 11 October 2021
Revised: 30 November 2021
Accepted: 31 December 2021
Published: 24 February 2022
© Tsinghua University Press 2022
Return