AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy

Zhaoxu Jing1,2,§Jiacheng Zhang1,3,§Jianlong Wang1,2Mingkang Zhu1,3Xinxian Wang1,2Tinghai Cheng1,2,4( )Jianyang Zhu1,3( )Zhong Lin Wang1,4,5( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
CUSTech Institute of Technology, Wenzhou, Zhejiang 325024, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

§ Zhaoxu Jing and Jiacheng Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

A three-dimensional (3D) fully-enclosed triboelectric nanogenerator (FE-TENG) with bionic fish-likestructure is proposed to harvest hydrokinetic energy, which realizes zero head power generation inshallow water with low flow velocity, and the FE-TENG immersed in water for 35 days demonstratesexcellent immersion durability with undiminished electrical performance.

Abstract

The hydrokinetic energy of river current, as one of the essential and widespread renewable energies, is difficult to be harvested in low flow velocity and shallow water areas. In this work, a three-dimensional (3D) fully-enclosed triboelectric nanogenerator (FE-TENG) with bionic fish-like structure for harvesting hydrokinetic energy is reported, which is comprised of the triboelectric power-generation unit, bionic fish-like structure and connection unit. Through the bionic structure, the FE-TENG realizes zero head power generation in shallow water with low flow velocity. What’s more, the effect of external excitations and bionic structures on the electrical performance are systematically studied in this work. The FE-TENG can generate peak power density of 7 and 0.36 W/m3 respectively under the simulated swing state with frequency of 1.25 Hz and simulated river current with flow velocity of 0.81 m/s. In practical applications, due to the 3D fully-enclosed design, the FE-TENG immersed in water for 35 days demonstrates excellent immersion durability with undiminished electrical performance. Therefore, the work proposes an efficient method realizing zero head power generation, and provides a good candidate for long-term service in the river current.

Electronic Supplementary Material

Video
12274_2022_4131_MOESM2_ESM.mp4
12274_2022_4131_MOESM3_ESM.mp4
Download File(s)
12274_2022_4131_MOESM1_ESM.pdf (3.6 MB)

References

1

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

2

Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

3

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

4

Yang, Z. B.; Zhou, S. X.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697.

5

New, T.; Xie, Z. Q. Impacts of large dams on riparian vegetation: Applying global experience to the case of China’s Three Gorges Dam. Biodivers. Conserv. 2008, 17, 3149–3163.

6

Maavara, T.; Chen, Q. W.; Van Meter, K.; Brown, L. E.; Zhang, J. Y.; Ni, J. R.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 2020, 1, 103–116.

7

Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (<5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator.ACS Nano 2016, 10, 4797–4805.

8

Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

9

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy 2020, 68, 104272.

10

Wang, Z. L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics - a recall on the original thoughts for coining these fields. Nano Energy 2018, 54, 477–483.

11

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

12

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

13

Lin, L.; Xie, Y. N.; Niu, S. M.; Wang, S. H.; Yang, P. K.; Wang, Z. L. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ~55%. Acs Nano 2015, 9, 922–930.

14

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

15

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

16

Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

17

Chen, J.; Yang, J.; Guo, H. Y.; Li, Z. L.; Zheng, L.; Su, Y. J.; Wen, Z.; Fan, X.; Wang, Z. L. Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 2015, 9, 12334–12343.

18

Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

19

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

20

Wang, J. L.; Li, Y. K.; Xie, Z. J.; Xu, Y. H.; Zhou, J. W.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Cylindrical direct-current triboelectric nanogenerator with constant output current. Adv. Energy Mater. 2020, 10, 1904227.

21

Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836–3842.

22

Wang, Z.; Yu, Y.; Wang, Y. T.; Lu, X. H.; Cheng, T. H.; Bao, G.; Wang, Z. L. Magnetic flap-type difunctional sensor for detecting pneumatic flow and liquid level based on triboelectric nanogenerator. ACS Nano 2020, 14, 5981–5987.

23

Gao, Q.; Cheng, T. H.; Wang, Z. L. Triboelectric mechanical sensors - progress and prospects. Extreme Mech. Lett. 2021, 42, 101100.

24

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

25

Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and internet of things. Joule 2021, 5, 1391–1431.

26

Jin, L.; Deng, W. L.; Su, Y. C.; Xu, Z.; Meng, H.; Wang, B.; Zhang, H. P.; Zhang, B. B.; Zhang, L.; Xiao, X. B. et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy 2017, 38, 185–192.

27

Jin, L.; Zhang, S. L.; Xu, S. X.; Guo, H. Y.; Yang, W. Q.; Wang, Z. L. Free-fixed rotational triboelectric nanogenerator for self-powered real-time wheel monitoring. Adv. Mater. Technol. 2021, 6, 2000918.

28

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

29

Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.

30

Tang, W.; Chen, B. D.; Wang, Z. L. Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 2019, 29, 1901069.

31

Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.

32

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

33

Lei, R.; Shi, Y. X.; Ding, Y. F.; Nie, J. H.; Li, S. Y.; Wang, F.; Zhai, H.; Chen, X. Y.; Wang, Z. L. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 2020, 13, 2178–2190.

34

Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2021, 4, 147–153.

35

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

36

Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.

37

Yin, M. F.; Lu, X. H.; Qiao, G. D.; Xu, Y. H.; Wang, Y. Q.; Cheng, T. H.; Wang, Z. L. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 2020, 10, 2000627.

38

Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.

39

Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

40

Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031–6037.

41

Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.

42

Zhou, H.; Li, D. X.; He, X. M.; Hui, X. D.; Guo, H. Y.; Hu, C. G.; Mu, X. J.; Wang, Z. L. Bionic ultra-sensitive self-powered electromechanical sensor for muscle-triggered communication application. Adv. Sci. 2021, 8, 2101020.

43

Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

44

Chen, B. D.; Tang, W.; He, C.; Deng, C. R.; Yang, L. J.; Zhu, L. P.; Chen, J.; Shao, J. J.; Liu, L.; Wang, Z. L. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 2018, 21, 88–97.

45

Bu, T. Z.; Xiao, T. X.; Yang, Z. W.; Liu, G. X.; Fu, X. P.; Nie, J. H.; Guo, T.; Pang, Y. K.; Zhao, J. Q.; Xi, F. B. et al. Stretchable triboelectric-photonic smart skin for tactile and gesture sensing. Adv. Mater. 2018, 30, 1800066.

46

Feilich, K. L. Correlated evolution of body and fin morphology in the cichlid fishes. Evolution 2016, 70, 2247–2267.

47

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

48

Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

Nano Research
Pages 5098-5104
Cite this article:
Jing Z, Zhang J, Wang J, et al. 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy. Nano Research, 2022, 15(6): 5098-5104. https://doi.org/10.1007/s12274-022-4131-y
Topics:

1129

Views

30

Crossref

29

Web of Science

30

Scopus

2

CSCD

Altmetrics

Received: 24 December 2021
Revised: 29 December 2021
Accepted: 31 December 2021
Published: 08 March 2022
© Tsinghua University Press 2022
Return