AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation

Yan Xiong1,2Xu Liu1Yi Hu1,2Dong Gu3Minghang Jiang1,2Zuoxiu Tie1,2Zhong Jin1,2( )
MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Suzhou Tierui New Energy Technology Co. Ltd., Suzhou 215228, China
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

The well-defined Ag24Au cluster decorated highly ordered nanorod-like mesoporous Co3O4(Ag24Au/meso-Co3O4) catalyst exhibited an ultrahigh CH4 yield rate of 204 mmol·g−1·h−1and a greatly improved CH4 selectivity for CO2 hydrogenation.

Abstract

Photothermal carbon dioxide hydrogenation represents a promising route to reduce the emission of greenhouse gas CO2 and produce value-added chemicals, but the selectivity and stability of photothermal catalysts need to be improved. Herein, we report the rational fabrication of well-defined Ag24Au cluster decorated highly ordered nanorod-like mesoporous Co3O4 (Ag24Au/meso-Co3O4) for highly efficient and selective CO2 hydrogenation. The orderly assembled meso-Co3O4 nanorods were prepared via a nanocasting method, offering large surface area and abundant active sites for CO2 adsorption and conversion. Moreover, the catalytic activity and selectivity were further improved by molecule-like Ag24Au cluster decoration and reaction temperature optimization. The Ag24Au/meso-Co3O4 composite catalyst exhibited an ultrahigh CH4 yield rate of 204 mmol·g−1·h−1 and a greatly improved CH4 selectivity of 82% for CO2 hydrogenation, significantly higher than those of pristine meso-Co3O4 catalyst. The mechanism of the photothermal catalytic performance improvement was verified by CO2 temperature-programmed desorption and time-resolved transient photoluminescence, revealing that CO2 molecules underwent a vigorous adsorption and rapid activation process over Ag24Au/meso-Co3O4. The hot electrons created by the localized surface plasmon resonance effect of Ag24Au clusters facilitated the charge transfer for subsequent multi-electron CO2 hydrogeneration processes, resulting in a significant increase in the productivity and selectivity for CO2-to-CH4 conversion. This work suggests that the rational coupling of well-defined metal atom clusters and ordered transition metal compound nanostructures could open a new avenue towards photo-induced green chemistry processes for efficient CO2 recycling and reutilization.

Electronic Supplementary Material

Download File(s)
12274_2022_4133_MOESM1_ESM.pdf (352.5 KB)

References

1
Bünger, U.; Landinger, H.; Pschorr-Schoberer, E.; Schmidt, P.; Weindorf, W.; Jöhrens, J.; Lambrecht, U.; Naumann, K.; Lischke; A. Power-to-gas (PtG) in transport status quo and perspectives for development.2011.
2
Lehner, M.; Tichler, R.; Steinmüller, H.; Koppe, M. Power-to-Gas: Technology and Business Models; Springer: Cham, Switzerland, 2014.https://doi.org/10.1007/978-3-319-03995-4
3

Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation—From fundamentals to current projects. Fuel 2016, 166, 276–296.

4

Jia, J.; Qian, C. X.; Dong, Y. C.; Li, Y. F.; Wang, H.; Ghoussoub, M.; Butler, K. T.; Walsh, A.; Ozin, G. A. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: Defect engineering-perfecting imperfection. Chem. Soc. Rev. 2017, 46, 4631–4644.

5

Titirici, M. M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116.

6

Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.

7

Bonin, J.; Robert, M.; Routier, M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 2014, 136, 16768–16771.

8

Li, W. H.; Wang, H. Z.; Jiang, X.; Zhu, J.; Liu, Z. M.; Guo, X. W.; Song, C. S. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv. 2018, 8, 7651–7669.

9

Tang, S. L.; Sun, J.; Hong, H.; Liu, Q. B. Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: A review. Front. Energy 2017, 11, 437–451.

10

Jia, J.; O'Brien, P. G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L. M.; Burrow, T. E.; Dong, Y. C.; Liao, K.; Varela, M. et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Adv. Sci. 2016, 3, 1600189.

11

Jia, J.; Wang, H.; Lu, Z. L.; O'Brien, P. G.; Ghoussoub, M.; Duchesne. P.; Zheng. Z. Q.; Li. P. C.; Qiao. Q.; Wang. L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.

12

Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong Y. C. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369–1381.

13

He, L.; Wood, T. E.; Wu, B.; Dong, Y. C.; Hoch, L. B.; Reyes, L. M.; Wang, D.; Kübel, C.; Qian, C. X.; Jia, J. et al. Spatial separation of charge carriers in In2O3−x(OH)y nanocrystal superstructures for enhanced gas-phase photocatalytic activity. ACS Nano 2016, 10, 5578–5586.

14

O'Brien, P. G.; Sandhel, A.; Wood, T. E.; Jelle, A. A.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, A. G. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. 2014, 1, 1400001.

15

Wang, C. J.; Ranasingha, O.; Natesakhawat, S.; Ohodnicki Jr, P. R.; Andio, M.; Lewis, J. P.; Matranga, C. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013, 5, 6968–6974.

16

Hartadi, Y.; Widmann, D.; Behm, R. J. Methanol synthesis via CO2 hydrogenation over a Au/ZnO catalyst: An isotope labelling study on the role of CO in the reaction process. Phys. Chem. Chem. Phys. 2016, 18, 10781–10791.

17

Dreyer, J. A. H.; Li, P. X.; Zhang, L. H.; Beh, G. K.; Zhang, R. D.; Sit, P. H. L.; Teoh, W. Y. Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Appl. Catal. B:Environ. 2017, 219, 715–726.

18

Martin, N. M.; Velin, P.; Skoglundh, M.; Bauer, M.; Carlsson, P. A. Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts. Catal. Sci. Technol. 2017, 7, 1086–1094.

19

Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237–10243.

20

Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; Debartolo, J.; Von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. A. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures. J. Am. Chem. Soc. 2015, 137, 8676–8679.

21

Alfonso, D. R.; Kauffman, D.; Matranga, C. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO. J. Chem. Phys. 2016, 144, 184705.

22

Austin, N.; Zhao, S.; McKone, J. R.; Jin, R. C.; Mpourmpakis, G. Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclusters. Catal. Sci. Technol. 2018, 8, 3795–3805.

23

Gu, D.; Jia, C. J.; Weidenthaler, C.; Bongard, H. J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 2015, 137, 11407–11418.

24

Liu, Y. Y.; Chai, X. Q.; Cai, X.; Chen, M. Y.; Jin, R. C.; Ding, W. P.; Zhu, Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C–C bond formation. Angew. Chem., Int. Ed. 2018, 57, 9775–9779.

25

Varnavski, O.; Ispasoiu, R. G.; Balogh, L.; Tomalia, D.; Goodson III, T. Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites. J. Chem. Phys. 2001, 114, 1962–1965.

26

Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794–2800.

27

Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 205423.

28

Han, S. W.; Kim, Y.; Kim, K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J. Colloid Interface Sci. 1998, 208, 272–278.

29

Leppelt, R.; Schumacher, B.; Plzak, V.; Kinne, M.; Behm, R. J. Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere. J. Catal. 2006, 244, 137–152.

30

Borgschulte, A.; Gallanda, t N.; Probst, B.; Suter, R.; Callini, E.; Ferri, D.; Arroyo, Y.; Erni, R.; Geerlings, H.; Züttel, A. Sorption enhanced CO2 methanation. Phys. Chem. Chem. Phys. 2013, 15, 9620–9625.

31

Yoon, Y.; Hall, A. S.; Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem., Int. Ed. 2016, 55, 15282–15286.

32

Zhang, A.; He, R.; Li, H. P.; Chen, Y. J.; Kong, T. Y.; Li, K.; Ju, H. X.; Zhu, J. F.; Zhu, W. G.; Zeng, J. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 10954–10958.

33

Pan, Q. S.; Peng, J. X.; Sun, T. J.; Wang, S.; Wang, S. D. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal. Commun. 2014, 45, 74–78.

34

Yang, Z. Y.; Moure, V. R.; Dean, D. R.; Seefeldt, L. C. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc. Natl. Acad. Sci. USA 2012, 109, 19644–19648.

35

He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

36

Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

37

Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 31, 1805127.

Nano Research
Pages 4965-4972
Cite this article:
Xiong Y, Liu X, Hu Y, et al. Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation. Nano Research, 2022, 15(6): 4965-4972. https://doi.org/10.1007/s12274-022-4133-9
Topics:

875

Views

22

Crossref

18

Web of Science

19

Scopus

4

CSCD

Altmetrics

Received: 08 November 2021
Revised: 27 December 2021
Accepted: 03 January 2022
Published: 24 March 2022
© Tsinghua University Press 2022
Return