Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photothermal carbon dioxide hydrogenation represents a promising route to reduce the emission of greenhouse gas CO2 and produce value-added chemicals, but the selectivity and stability of photothermal catalysts need to be improved. Herein, we report the rational fabrication of well-defined Ag24Au cluster decorated highly ordered nanorod-like mesoporous Co3O4 (Ag24Au/meso-Co3O4) for highly efficient and selective CO2 hydrogenation. The orderly assembled meso-Co3O4 nanorods were prepared via a nanocasting method, offering large surface area and abundant active sites for CO2 adsorption and conversion. Moreover, the catalytic activity and selectivity were further improved by molecule-like Ag24Au cluster decoration and reaction temperature optimization. The Ag24Au/meso-Co3O4 composite catalyst exhibited an ultrahigh CH4 yield rate of 204 mmol·g−1·h−1 and a greatly improved CH4 selectivity of 82% for CO2 hydrogenation, significantly higher than those of pristine meso-Co3O4 catalyst. The mechanism of the photothermal catalytic performance improvement was verified by CO2 temperature-programmed desorption and time-resolved transient photoluminescence, revealing that CO2 molecules underwent a vigorous adsorption and rapid activation process over Ag24Au/meso-Co3O4. The hot electrons created by the localized surface plasmon resonance effect of Ag24Au clusters facilitated the charge transfer for subsequent multi-electron CO2 hydrogeneration processes, resulting in a significant increase in the productivity and selectivity for CO2-to-CH4 conversion. This work suggests that the rational coupling of well-defined metal atom clusters and ordered transition metal compound nanostructures could open a new avenue towards photo-induced green chemistry processes for efficient CO2 recycling and reutilization.
Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation—From fundamentals to current projects. Fuel 2016, 166, 276–296.
Jia, J.; Qian, C. X.; Dong, Y. C.; Li, Y. F.; Wang, H.; Ghoussoub, M.; Butler, K. T.; Walsh, A.; Ozin, G. A. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: Defect engineering-perfecting imperfection. Chem. Soc. Rev. 2017, 46, 4631–4644.
Titirici, M. M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116.
Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.
Bonin, J.; Robert, M.; Routier, M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 2014, 136, 16768–16771.
Li, W. H.; Wang, H. Z.; Jiang, X.; Zhu, J.; Liu, Z. M.; Guo, X. W.; Song, C. S. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv. 2018, 8, 7651–7669.
Tang, S. L.; Sun, J.; Hong, H.; Liu, Q. B. Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: A review. Front. Energy 2017, 11, 437–451.
Jia, J.; O'Brien, P. G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L. M.; Burrow, T. E.; Dong, Y. C.; Liao, K.; Varela, M. et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Adv. Sci. 2016, 3, 1600189.
Jia, J.; Wang, H.; Lu, Z. L.; O'Brien, P. G.; Ghoussoub, M.; Duchesne. P.; Zheng. Z. Q.; Li. P. C.; Qiao. Q.; Wang. L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.
Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong Y. C. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369–1381.
He, L.; Wood, T. E.; Wu, B.; Dong, Y. C.; Hoch, L. B.; Reyes, L. M.; Wang, D.; Kübel, C.; Qian, C. X.; Jia, J. et al. Spatial separation of charge carriers in In2O3−x(OH)y nanocrystal superstructures for enhanced gas-phase photocatalytic activity. ACS Nano 2016, 10, 5578–5586.
O'Brien, P. G.; Sandhel, A.; Wood, T. E.; Jelle, A. A.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, A. G. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. 2014, 1, 1400001.
Wang, C. J.; Ranasingha, O.; Natesakhawat, S.; Ohodnicki Jr, P. R.; Andio, M.; Lewis, J. P.; Matranga, C. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013, 5, 6968–6974.
Hartadi, Y.; Widmann, D.; Behm, R. J. Methanol synthesis via CO2 hydrogenation over a Au/ZnO catalyst: An isotope labelling study on the role of CO in the reaction process. Phys. Chem. Chem. Phys. 2016, 18, 10781–10791.
Dreyer, J. A. H.; Li, P. X.; Zhang, L. H.; Beh, G. K.; Zhang, R. D.; Sit, P. H. L.; Teoh, W. Y. Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Appl. Catal. B:Environ. 2017, 219, 715–726.
Martin, N. M.; Velin, P.; Skoglundh, M.; Bauer, M.; Carlsson, P. A. Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts. Catal. Sci. Technol. 2017, 7, 1086–1094.
Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237–10243.
Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; Debartolo, J.; Von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. A. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures. J. Am. Chem. Soc. 2015, 137, 8676–8679.
Alfonso, D. R.; Kauffman, D.; Matranga, C. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO. J. Chem. Phys. 2016, 144, 184705.
Austin, N.; Zhao, S.; McKone, J. R.; Jin, R. C.; Mpourmpakis, G. Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclusters. Catal. Sci. Technol. 2018, 8, 3795–3805.
Gu, D.; Jia, C. J.; Weidenthaler, C.; Bongard, H. J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 2015, 137, 11407–11418.
Liu, Y. Y.; Chai, X. Q.; Cai, X.; Chen, M. Y.; Jin, R. C.; Ding, W. P.; Zhu, Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C–C bond formation. Angew. Chem., Int. Ed. 2018, 57, 9775–9779.
Varnavski, O.; Ispasoiu, R. G.; Balogh, L.; Tomalia, D.; Goodson III, T. Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites. J. Chem. Phys. 2001, 114, 1962–1965.
Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794–2800.
Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 205423.
Han, S. W.; Kim, Y.; Kim, K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J. Colloid Interface Sci. 1998, 208, 272–278.
Leppelt, R.; Schumacher, B.; Plzak, V.; Kinne, M.; Behm, R. J. Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere. J. Catal. 2006, 244, 137–152.
Borgschulte, A.; Gallanda, t N.; Probst, B.; Suter, R.; Callini, E.; Ferri, D.; Arroyo, Y.; Erni, R.; Geerlings, H.; Züttel, A. Sorption enhanced CO2 methanation. Phys. Chem. Chem. Phys. 2013, 15, 9620–9625.
Yoon, Y.; Hall, A. S.; Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem., Int. Ed. 2016, 55, 15282–15286.
Zhang, A.; He, R.; Li, H. P.; Chen, Y. J.; Kong, T. Y.; Li, K.; Ju, H. X.; Zhu, J. F.; Zhu, W. G.; Zeng, J. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 10954–10958.
Pan, Q. S.; Peng, J. X.; Sun, T. J.; Wang, S.; Wang, S. D. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal. Commun. 2014, 45, 74–78.
Yang, Z. Y.; Moure, V. R.; Dean, D. R.; Seefeldt, L. C. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc. Natl. Acad. Sci. USA 2012, 109, 19644–19648.
He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.
Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.
Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 31, 1805127.