AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions

Siyu Zhao1,2,3,§Xuetao Yang1,2,§Yingying Xu1,3Zhenzhen Weng4Lan Liao1,3( )Xiaolei Wang2,4( )
The Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, China
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
College of Chemistry, Nanchang University, Nanchang 330088, China

§ Siyu Zhao and Xuetao Yang contributed equally to this work.

Show Author Information

Graphical Abstract

A sprayable protectant (ZFP) is designed to renovate the concept of current dental protection, realizingmultiple functions (anti-bacterial, acid-resistant, and anti-fouling) to maintain the health and beauty ofthe teeth.

Abstract

Effective dental care can reduce the incidence of oral diseases (dental caries, dentin sensitivity, tooth discoloration, etc.). However, delayed or inappropriate usage of care tools not only fails to eliminate external adverse stimuli, but sometimes even causes dental injury. Inspired by the traditional culture of “lacquer teeth”, a sprayable superhydrophobic protectant (ZFP) composed of ZnO, fluorine modified nano-silica (FSNs), and polydimethylsiloxane (PDMS) is constructed similar to automobile wax, for routine dental protection. With its superhydrophobic properties, this protective membrane can effectively resist the adhesion of bacteria, proteins, and food residues to the teeth surface. Meanwhile, ZFP exerts stable superhydrophobic self-cleaning properties under external mechanical stimulation, temperature alternation, and acidic environment. In addition, ZnO in ZFP can significantly restrain the growth of dental caries-related bacteria (Streptococcus mutans), with an enhanced anti-bacterial capacity when combined with yellow light irradiation. Both in vivo and in vitro experiments demonstrate that ZFP is a safe, convenient, and quadruplex-effective dental protectant, which is expected to serve as a promising toothpaste companion for joint maintenance of dental health.

Electronic Supplementary Material

Video
12274_2022_4136_MOESM2_ESM.mp4
12274_2022_4136_MOESM3_ESM.mp4
12274_2022_4136_MOESM4_ESM.mp4
12274_2022_4136_MOESM5_ESM.mp4
12274_2022_4136_MOESM6_ESM.mp4
12274_2022_4136_MOESM7_ESM.mp4
Download File(s)
12274_2022_4136_MOESM1_ESM.pdf (812.7 KB)

References

1

Peres, M. A.; Macpherson, L. M. D.; Weyant, R. J.; Daly, B.; Venturelli, R.; Mathur, M. R.; Listl, S.; Celeste, R. K.; Guarnizo-Herreno, C. C.; Kearns, C. et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249260.

2

Müller, F.; Shimazaki, Y.; Kahabuka, F.; Schimmel, M. Oral health for an ageing population: The importance of a natural dentition in older adults. Int. Dent. J. 2017, 67 Suppl 2, 7–13.

3

Gillette, W. B.; Van House, R. L. Ill effects of improper oral hygiene procedures. J. Am. Dent. Assoc. 1980, 101, 476–480.

4

Walters, J. D.; Chang, E. I. Periodontal bone loss associated with an improper flossing technique: A case report. Int. J. Dent. Hyg. 2003, 1, 115–119.

5

Rao, D. P.; McFaull, S. Tooth “ache”: Injuries related to toothbrush use. Paediatr. Child Health 2019, 24, e40–e44.

6

Nguyen, V. C. The habit of black lacquering of teeth and dental caries. Czas. Stomatol. 1990, 43, 600–603.

7

Falde, E. J.; Yohe, S. T.; Colson, Y. L.; Grinstaff, M. W. Superhydrophobic materials for biomedical applications. Biomaterials 2016, 104, 87–103.

8

Ge, M. Z.; Cao, C. Y.; Liang, F. H.; Liu, R.; Zhang, Y.; Zhang, W.; Zhu, T. X.; Yi, B.; Tang, Y. X.; Lai, Y. K. A “PDMS-in-water” emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature. Nanoscale Horiz. 2020, 5, 65–73.

9

Zhong, H.; Zhu, Z. R.; You, P.; Lin, J.; Cheung, C. F.; Lu, V. L.; Yan, F.; Chan, C. Y.; Li, G. J. Plasmonic and superhydrophobic self-decontaminating N95 respirators. ACS Nano 2020, 14, 8846–8854.

10

Lin, Z. Z.; Wang, Z.; Zhang, X.; Diao, D. F. Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Res. 2021, 14, 1110–1115.

11

Souza, J. G. S.; Bertolini, M.; Costa, R. C.; Cordeiro, J. M.; Nagay, B. E.; de Almeida, A. B.; Retamal-Valdes, B.; Nociti, F. H.; Feres, M.; Rangel, E. C. et al. Targeting pathogenic biofilms: Newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface. ACS Appl. Mater. Interfaces 2020, 12, 10118–10129.

12

Liu, J.; Ye, L. J.; Sun, Y. L.; Hu, M. H.; Chen, F.; Wegner, S.; Mailander, V.; Steffen, W.; Kappl, M.; Butt, H. J. Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing. Adv. Mater. 2020, 32, 1908008.

13

Mao, C. Y.; Xiang, Y. M.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Wang, X. B.; Chu, P. K.; Wu, S. L. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano 2017, 11, 9010–9021.

14

Jiang, R. J.; Hao, L. W.; Song, L. J.; Tian, L. M.; Fan, Y.; Zhao, J.; Liu, C. Z.; Ming, W. H.; Ren, L. Q. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chem. Eng. J. 2020, 398, 125609.

15

Zhao, S. Y.; Xu, Y. Y.; Xu, W. Y.; Weng, Z. Z.; Cao, F.; Wan, X. Y.; Cui, T. C.; Yu, Y. J.; Liao, L.; Wang, X. L. Tremella-like ZnO@Col-I-decorated titanium surfaces with dual-light-defined broad-spectrum antibacterial and triple osteogenic properties. ACS Appl. Mater. Interfaces 2020, 12, 30044–30051.

16

Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B. et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59.

17

Yoon, J.; Ryu, M.; Kim, H.; Ahn, G. N.; Yim, S. J.; Kim, D. P.; Lee, H. Wet-style superhydrophobic antifogging coatings for optical sensors. Adv. Mater. 2020, 32, 2002710.

18

Zhu, N. X.; Wei, Z. W.; Chen, C. X.; Wang, D. W.; Cao, C. C.; Qiu, Q. F.; Jiang, J. J.; Wang, H. P.; Su, C. Y. Self-generation of surface roughness by low-surface-energy alkyl chains for highly stable superhydrophobic/superoleophilic MOFs with multiple functionalities. Angew. Chem., Int. Ed. 2019, 58, 17033–17040.

19

Sharma, D.; Jia, W. K.; Long, F.; Pati, S.; Chen, Q. H.; Qyang, Y. B.; Lee, B.; Choi, C. K.; Zhao, F. Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture. Bioact. Mater. 2019, 4, 142–150.

20

Yang, Y. W.; Cheng, Y.; Peng, S. P.; Xu, L.; He, C. X.; Qi, F. W.; Zhao, M. C.; Shuai, C. J. Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioact. Mater. 2021, 6, 1230–1241.

21

Wang, P. W.; Zhao, T. Y.; Bian, R. X.; Wang, G. Y.; Liu, H. Robust superhydrophobic carbon nanotube film with lotus leaf mimetic multiscale hierarchical structures. ACS Nano 2017, 11, 12385–12391.

22

Qiao, Z. Z.; Yao, Y. Y.; Song, S. M.; Yin, M. H.; Luo, J. B. Silver nanoparticles with pH induced surface charge switchable properties for antibacterial and antibiofilm applications. J. Mater. Chem. B 2019, 7, 830–840.

23

Zhu, C.; Li, H.; Wang, H. B.; Yao, B. W.; Huang, H.; Liu, Y.; Kang, Z. H. Negatively charged carbon nanodots with bacteria resistance ability for high-performance antibiofilm formation and anticorrosion coating design. Small 2019, 15, 1900007.

24

Wang, Q. Y.; Sun, G.; Tong, Q. D.; Yang, W.; Hao, W. T. Fluorine-free superhydrophobic coatings from polydimethylsiloxane for sustainable chemical engineering: Preparation methods and applications. Chem. Eng. J. 2021, 426, 130829.

25

Lee, H. K.; Ray, S. S.; Thanh Huyen, D. T.; Kang, W.; Kwon, Y. N. Chemical and surface engineered superhydrophobic patterned membrane with enhanced wetting and fouling resistance for improved membrane distillation performance. J. Memb. Sci. 2021, 629, 119280.

26

Authimoolam, S. P.; Puleo, D. A.; Dziubla, T. D. Affinity based multilayered polymeric self-assemblies for oral wound applications. Adv. Healthc. Mater. 2013, 2, 983–992.

27

Zafar, M. S.; Ahmed, N. The effects of acid etching time on surface mechanical properties of dental hard tissues. Dent. Mater. J. 2015, 34, 315–320.

28

Bai, X. X.; Lin, C. C.; Wang, Y. Y.; Ma, J.; Wang, X.; Yao, X. H.; Tang, B. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent. Mater. 2020, 36, 794–807.

29

Lu, Y.; Sathasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135.

30

Yang, L. N.; Wen, M.; Dai, X.; Cheng, G.; Zhang, K. Ultrafine ceramic grains embedded in metallic glass matrix: Achieving superior wear resistance via increase in both hardness and toughness. ACS Appl. Mater. Interfaces 2018, 10, 16124–16132.

31

Liao, Y.; Zheng, G. T.; Huang, J. J.; Tian, M.; Wang, R. Development of robust and superhydrophobic membranes to mitigate membrane scaling and fouling in membrane distillation. J. Memb. Sci. 2020, 601, 117962.

32

Tseng, P.; Napier, B.; Garbarini, L.; Kaplan, D. L.; Omenetto, F. G. Functional, RF-trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food consumption. Adv. Mater. 2018, 30, 1703257.

33

Chen, X. T.; Wang, P.; Zhang, D.; Ou, J. F. Rational fabrication of superhydrophobic surfaces with coalescence-induced droplet jumping behavior for atmospheric corrosion protection. Chem. Eng. J. 2022, 428, 132029.

34

Figuero, E.; Nóbrega, D. F.; García-Gargallo, M.; Tenuta, L. M. A.; Herrera, D.; Carvalho, J. C. Mechanical and chemical plaque control in the simultaneous management of gingivitis and caries: A systematic review. J. Clin. Periodontol. 2017, 44 Suppl 18, S116–S134.

35

Rosan, B.; Lamont, R. J. Dental plaque formation. Microbes Infect. 2000, 2, 1599–1607.

36

Eshed, M.; Lellouche, J.; Gedanken, A.; Banin, E. A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO. Adv. Funct. Mater. 2014, 24, 1382–1390.

37

Ye, J.; Li, B.; Li, M.; Zheng, Y. F.; Wu, S. L.; Han, Y. Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing. Bioact. Mater. 2022, 11, 181–191.

38

Zhang, J. C.; Ge, J. L.; Si, Y.; Zhang, F.; Yu, J. Y.; Liu, L. F.; Ding, B. Taro leaf-inspired and superwettable nanonet-covered nanofibrous membranes for high-efficiency oil purification. Nanoscale Horiz. 2019, 4, 1174–1184.

39

Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

40

Krzyściak, W.; Jurczak, A.; Kościelniak, D.; Bystrowska, B.; Skalniak, A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 499–515.

41

Yu, J.; Kim, Y. H.; Kim, H. M.; Oh, J. M.; Kim, Y. R.; Choi, S. J. Determination of the fate and biological responses of food additive silica particles in commercial foods. Food Chem. 2020, 331, 127304.

Nano Research
Pages 5245-5255
Cite this article:
Zhao S, Yang X, Xu Y, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions. Nano Research, 2022, 15(6): 5245-5255. https://doi.org/10.1007/s12274-022-4136-6
Topics:

1242

Views

15

Crossref

14

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 04 November 2021
Revised: 03 January 2022
Accepted: 04 January 2022
Published: 09 March 2022
© Tsinghua University Press 2022
Return