Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In the present work, a new combination of Raman and ultraviolet and visible (UV/Vis) absorption spectroelectrochemistry in reflection mode is proposed. The new experimental setup allows obtaining the two kinds of spectroscopic data without interferences concomitantly with the electrochemical information. To the best of our knowledge, it is the first time to report the simultaneous obtention of electrochemical, electronic, and vibrational information in the same experiment. This new combination provides time-resolved information about the processes that are taking place on the electrode/solution interface which has significant implications in different fields of chemistry, such as modification of electrodes, studies of electrocatalytic reaction mechanisms, development of sensors, among others. Two different systems were used to demonstrate the advantages and capabilities of the brand-new technique, namely, the oxidation of potassium ferrocyanide, an out-sphere system that is usually employed in the validation of SEC techniques, and the electrochemical-surface enhanced Raman spectroscopy (EC-SERS) detection of crystal violet by in-situ formation of the silver SERS substrate, where the UV/Vis spectra were used to follow the formation of the SERS substrate, whereas the Raman response of a probe molecule was used to confirm either the formation of a nanostructured surface and to obtain the fingerprint of the molecule with a high time resolution. The brand-new experimental setup has shown to be useful, versatile, robust, compact, and easy to use for future applications.
Heineman, W. R. Spectroelectrochemistry. Combination of optical and electrochemical techniques for studies of redox chemistry. Anal. Chem. 1978, 50, 390A–402A.
Kuwana, T.; Darlington, R. K.; Leedy, D. W. Electrochemical studies using conducting glass indicator electrodes. Anal. Chem. 1964, 36, 2023–2025.
Dunsch, L. Recent advances in in situ multi-spectroelectrochemistry. J. Solid State Electrochem. 2011, 15, 1631–1646.
Heineman, W. R. Spectroelectrochemistry: The combination of optical and electrochemical techniques. J. Chem. Educ. 1983, 60, 305.
Garoz-Ruiz, J.; Perales-Rondon, J. V.; Heras, A.; Colina, A. Spectroelectrochemical sensing: Current trends and challenges. Electroanalysis 2019, 31, 1254–1278.
Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Kinetics and mechanism of the electrooxidation of formic acid—Spectroelectrochemical studies in a flow cell. Angew. Chem., Int. Ed. 2006, 45, 981–985.
Martín-Yerga, D.; Pérez-Junquera, A.; Hernández-Santos, D.; Fanjul-Bolado, P. Time-resolved luminescence spectroelectrochemistry at screen-printed electrodes: Following the redox-dependent fluorescence of [Ru(Bpy)3]2+. Anal. Chem. 2017, 89, 10649–10654.
Ibañez, D.; Fernandez-Blanco, C.; Heras, A.; Colina, A. Time-resolved study of the surface-enhanced Raman scattering effect of silver nanoparticles generated in voltammetry experiments. J. Phys. Chem. C 2014, 118, 23426–23433.
Ibañez, D.; Plana, D.; Heras, A.; Fermín, D. J.; Colina, A. Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved Raman spectroelectrochemistry. Electrochem. Commun. 2015, 54, 14–17.
López-Palacios, J.; Colina, A.; Heras, A.; Ruiz, V.; Fuente, L. Bidimensional spectroelectrochemistry. Anal. Chem. 2001, 73, 2883–2889.
Garoz-Ruiz, J.; Heras, A.; Palmero, S.; Colina, A. Development of a novel bidimensional spectroelectrochemistry cell using transfer single-walled carbon nanotubes films as optically transparent electrodes. Anal. Chem. 2015, 87, 6233–6239.
Izquierdo, D.; Ferraresi-Curotto, V.; Heras, A.; Pis-Diez, R.; Gonzalez-Baro, A. C.; Colina, A. Bidimensional Spectroelectrochemistry: Application of a new device in the study of a o-vanillin-copper(II) complex. Electrochim. Acta 2017, 245, 79–87.
Skully, J. P.; McCreery, R. L. Glancing incidence external reflection spectroelectrochemistry with a continuum source. Anal. Chem. 1980, 52, 1885–1889.
Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8.
Mulvaney, S. P.; Keating, C. D. Raman spectroscopy. Anal. Chem. 2000, 72, 145–158.
Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338 A–346 A.
Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem., Int. Ed. 2014, 53, 4756–4795.
Tian, Z. Q. Surface-enhanced Raman spectroscopy: Advancements and applications. J. Raman Spectrosc. 2005, 36, 466–470.
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.
Sharma, B.; Frontiera, R. R.; Henry, A. I.; Ringe, E.; Van Duyne, R. P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25.
Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M. Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11, 4468–4488.
Zong, C.; Chen, C. J.; Zhang, M.; Wu, D. Y.; Ren, B. Transient electrochemical surface-enhanced Raman spectroscopy: A millisecond time-resolved study of an electrochemical redox process. J. Am. Chem. Soc. 2015, 137, 11768–11774.
Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041.
Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.
Cortés, E.; Etchegoin, P. G.; Le Ru, E. C.; Fainstein, A.; Vela, M. E.; Salvarezza, R. C. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132, 18034–18037.
Zhang, H.; Zhang, X. G.; Wei, J.; Wang, C.; Chen, S.; Sun, H. L.; Wang, Y. H.; Chen, B. H.; Yang, Z. L.; Wu, D. Y. et al. Revealing the role of interfacial properties on catalytic behaviors by in situ surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2017, 139, 10339–10346.
Zhan, C.; Chen, X. J.; Huang, Y. F.; Wu, D. Y.; Tian, Z. Q. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced Raman spectroscopy. Acc. Chem. Res. 2019, 52, 2784–2792.
Sun, L. L.; Fang, Y. M.; Li, Z. M.; Wang, W.; Chen, H. Y. Simultaneous optical and electrochemical recording of single nanoparticle electrochemistry. Nano Res. 2017, 10, 1740–1748.
Yang, X. G.; Wang, Y. X.; Li, C. M.; Wang, D. W. Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Res. 2021, 14, 3446–3457.
Ibañez, D.; Garoz-Ruiz, J.; Heras, A.; Colina, A. Simultaneous UV–visible absorption and Raman spectroelectrochemistry. Anal. Chem. 2016, 88, 8210–8217.
Schroll, C. A.; Chatterjee, S.; Heineman, W. R.; Bryan, S. A. Semi-infinite linear diffusion spectroelectrochemistry on an aqueous micro-drop. Anal. Chem. 2011, 83, 4214–4219.
Schorr, N. B.; Jiang, A. G.; Rodríguez-López, J. Probing graphene interfacial reactivity via simultaneous and colocalized Raman-scanning electrochemical microscopy imaging and interrogation. Anal. Chem. 2018, 90, 7848–7854.
Gómez, E.; García-Torres, J.; Vallés, E. Study and preparation of silver electrodeposits at negative potentials. J. Electroanal. Chem. 2006, 594, 89–95.
Foster, D. G.; Shapir, Y.; Jorné, J. Scaling of roughness in silver electrodeposition. J. Electrochem. Soc. 2003, 150, C375.
Ibañez, D.; Izquierdo, D.; Fernandez-Blanco, C.; Heras, A.; Colina, A. Electrodeposition of silver nanoparticles in the presence of different complexing agents by time-resolved Raman spectroelectrochemistry. J. Raman Spectrosc. 2018, 49, 482–492.
Perales-Rondon, J. V.; Hernandez, S.; Martin-Yerga, D.; Fanjul-Bolado, P.; Heras, A.; Colina, A. Electrochemical surface oxidation enhanced Raman scattering. Electrochim. Acta 2018, 282, 377–383.
Siek, M.; Kaminska, A.; Kelm, A.; Rolinski, T.; Holyst, R.; Opallo, M. Niedziolka-Jonsson, J. Electrodeposition for preparation of efficient surface-enhanced Raman scattering-active silver nanoparticle substrates for neurotransmitter detection. Electrochim. Acta 2013, 89, 284–291.
Zarkadas, G. M.; Stergiou, A.; Papanastasiou, G. Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions. Electrochim. Acta 2005, 50, 5022–5031.
Desai, R.; Mankad, V.; Gupta, S. K.; Jha, P. K. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci. Nanotechnol. Lett. 2012, 4, 30–34.
Tsuji, M.; Gomi, S.; Maeda, Y.; Matsunaga, M.; Hikino, S.; Uto, K.; Tsuji, T.; Kawazumi, H. Rapid Transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 2012, 28, 8845–8861.
Al-Ghamdi, H. S.; Mahmoud, W. E. One pot synthesis of multi-plasmonic shapes of silver nanoparticles. Mater. Lett. 2013, 105, 62–64.
Ustarroz, J.; Kang, M.; Bullions, E.; Unwin, P. R. Impact and oxidation of single silver nanoparticles at electrode surfaces: One shot versus multiple events. Chem. Sci. 2017, 8, 1841–1853.
Wonner, K.; Rurainsky, C.; Tschulik, K. Operando studies of the electrochemical dissolution of silver nanoparticles in nitrate solutions observed with hyperspectral dark-field microscopy. Front. Chem. 2020, 7, 912.