AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bulky nanodiamond-confined synthesis of sub-5 nanometer ordered intermetallic Pd3Pb catalysts

Lei Wang1Peng Yin1Wei-Jie Zeng1Shi-Long Xu1Ping Chen2Hai-Wei Liang1( )
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
Show Author Information

Graphical Abstract

The strong electronic interactions between Pd and ND@G ensure the formation of sub-5 nm Pd3Pbintermetallic compound catalysts that exhibit robust catalytic performance for the semihydrogenationof alkynes.

Abstract

Modulation of geometric and electronic structures of supported Pd-based catalysts by forming atomically ordered intermetallic phases enables an effective way to optimize catalytic performance. However, the synthesis of small-sized Pd-based intermetallic nanoparticle catalysts with improved mass-based activity remains formidable challenges, since high-temperature annealing generally required for atom ordering inevitably leads to severe metal sintering and thus large crystallites. Here, we present a bulky nanodiamond-confined method to prepare sub-5 nm Pd3Pb intermetallic nanocatalysts by mitigating metal sintering at high temperatures, which is induced by the electronic interactions between metal and defect-rich graphene shells reinforced by diamond cores in the bulky nanodiamond support. The prepared small-sized Pd3Pb intermetallic catalyst displays a high activity with a turnover frequency of 932 h−1 for the semihydrogenation of phenylacetylene under mild conditions (room temperature, 3 bar H2), along with a high selectivity of > 96% to styrene near the complete conversion of phenylacetylene.

Electronic Supplementary Material

Download File(s)
12274_2022_4138_MOESM1_ESM.pdf (3.8 MB)

References

1

Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A. L.; Kiwi-Minsker, L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2012, 2, 1773–1786.

2

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Xie, J. L.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.

3

Chernichenko, K.; Madarász, Á.; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat. Chem. 2013, 5, 718–723.

4

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.

5

Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.

6

Kuwahara, Y.; Kango, H.; Yamashita, H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal. 2019, 9, 1993–2006.

7

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

8

Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 2014, 5, 5787.

9

McCue, A. J.; Anderson, J. A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front. Chem. Sci. Eng. 2015, 9, 142–153.

10

Doyle, A. M.; Shaikhutdinov, S. K.; Jackson, S. D.; Freund, H. J. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals? Angew. Chem., Int. Ed. 2003, 42, 5240–5243.

11

Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.

12

Tew, M. W.; Janousch, M.; Huthwelker, T.; Van Bokhoven, J. A. The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J. Catal. 2011, 283, 45–54.

13

Semagina, N.; Grasemann, M.; Xanthopoulos, N.; Renken, A.; Kiwi-Minsker, L. Structured catalyst of Pd/ZnO on sintered metal fibers for 2-methyl-3-butyn-2-ol selective hydrogenation. J. Catal. 2007, 251, 213–222.

14

García-Mota, M.; Gómez-Díaz, J.; Novell-Leruth, G.; Vargas-Fuentes, C.; Bellarosa, L.; Bridier, B.; Pérez-Ramírez, J.; López, N. A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst. Theor. Chem. Acc. 2011, 128, 663–673.

15

Niu, W. X.; Gao, Y. J.; Zhang, W. Q.; Yan, N.; Lu, X. M. Pd-Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem., Int. Ed. 2015, 54, 8271–8274.

16

Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725.

17

Cao, Y. Q.; Sui, Z. J.; Zhu, Y. A.; Zhou, X. G.; Chen, D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: Promotional effect of indium and composition-dependent performance. ACS Catal. 2017, 7, 7835–7846.

18

Wang, L.; Yin, P.; Zhang, L. L.; Shen, S. C.; Xu, S. L.; Chen, P.; Liang, H. W. Nitrogen-fixing of ultrasmall Pd-based bimetallic nanoclusters on carbon supports. J. Catal. 2020, 389, 297–304.

19

López, N.; Vargas-Fuentes, C. Promoters in the hydrogenation of alkynes in mixtures: Insights from density functional theory. Chem. Commun. (Camb.) 2012, 48, 1379–1391.

20

Wowsnick, G.; Teschner, D.; Armbrüster, M.; Kasatkin, I.; Girgsdies, F.; Grin, Y.; Schlögl, R.; Behrens, M. Surface dynamics of the intermetallic catalyst Pd2Ga, part II-reactivity and stability in liquid-phase hydrogenation of phenylacetylene. J. Catal. 2014, 309, 221–230.

21

Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.

22

Furukawa, S.; Komatsu, T. Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735–765.

23

Armbrüster, M.; Schlögl, R.; Grin, Y. Intermetallic compounds in heterogeneous catalysis-a quickly developing field. Sci. Technol. Adv. Mater. 2014, 15, 034803.

24

Chen, L. W.; He, F. X.; Shao, R. Y.; Yan, Q. Q.; Yin, P.; Zeng, W. J.; Zuo, M.; He, L. X.; Liang, H. W. Intermetallic IrGa−IrOx core–shell electrocatalysts for oxygen evolution. Nano Res. 2022, 15, 1853–1860.

25

Hu, Y. Z.; Lu, Y.; Zhao, X. R.; Shen, T.; Zhao, T. H.; Gong, M. X.; Chen, K.; Lai, C. L.; Zhang, J.; Xin, H. L. et al. Highly active N-doped carbon encapsulated Pd–Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. 2020, 13, 2365–2370.

26

Kovnir, K.; Osswald, J.; Armbrüster, M.; Teschner, D.; Weinberg, G.; Wild, U.; Knop-Gericke, A.; Ressler, T.; Grin, Y.; Schlögl, R. Etching of the intermetallic compounds PdGa and Pd3Ga7: An effective way to increase catalytic activity? J. Catal. 2009, 264, 93–103.

27

Armbrüster, M.; Wowsnick, G.; Friedrich, M.; Heggen, M.; Cardoso-Gil, R. Synthesis and catalytic properties of nanoparticulate intermetallic Ga–Pd compounds. J. Am. Chem. Soc. 2011, 133, 9112–9118.

28

Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A. et al. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem 2012, 4, 1048–1063.

29

Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

30

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

31

Furukawa, S.; Endo, M.; Komatsu, T. Bifunctional catalytic system effective for oxidative dehydrogenation of 1-butene and n-butane using Pd-based intermetallic compounds. ACS Catal. 2014, 4, 3533–3542.

32

Furukawa, S.; Suzuki, R.; Komatsu, T. Selective activation of alcohols in the presence of reactive amines over intermetallic PdZn: Efficient catalysis for alcohol-based N-alkylation of various amines. ACS Catal. 2016, 6, 5946–5953.

33

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

34

Zhang, L. Y.; Liu, H. Y.; Huang, X.; Sun, X. P.; Jiang, Z.; Schlögl, R.; Su, D. S. Stabilization of palladium nanoparticles on nanodiamond-graphene core–shell supports for CO oxidation. Angew. Chem., Int. Ed. 2015, 54, 15823–15826.

35

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.

36

Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.

37

Duan, X. G.; Tian, W. J.; Zhang, H. Y.; Sun, H. Q.; Ao, Z. M.; Shao, Z. P.; Wang, S. B. sp2/sp3 framework from diamond nanocrystals: A key bridge of carbonaceous structure to carbocatalysis. ACS Catal. 2019, 9, 7494–7519.

38

Dai, Y. Q.; Lu, P.; Cao, Z. M.; Campbell, C. T.; Xia, Y. N. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 2018, 47, 4314–4331.

39

Duan, X. G.; Ao, Z. M.; Li, D. G.; Sun, H. Q.; Zhou, L.; Suvorova, A.; Saunders, M.; Wang, G. X.; Wang, S. B. Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon 2016, 103, 404–411.

40

Duan, X. G.; Ao, Z. M.; Zhang, H. Y.; Saunders, M.; Sun, H. Q.; Shao, Z. P.; Wang, S. B. Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core–shell layer dependence. Appl. Catal. B:Environ. 2018, 222, 176–181.

41

Zhang, J. Y.; Cai, X. B.; Wu, K. H.; Zhang, Y. J.; Wang, J.; Diao, J. Y.; Wang, N.; Liu, H. Y.; Su, D. S. Nanodiamond-core-reinforced, graphene-shell-immobilized platinum nanoparticles as a highly active catalyst for the low-temperature dehydrogenation of n-butane. ChemCatChem 2018, 10, 520–524.

42

Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

43

Liu, J.; Yue, Y. Y.; Liu, H. Y.; Da, Z. J.; Liu, C. C.; Ma, A. Z.; Rong, J. F.; Su, D. S.; Bao, X. J.; Zheng, H. D. Origin of the robust catalytic performance of nanodiamond-graphene-supported Pt nanoparticles used in the propane dehydrogenation reaction. ACS Catal. 2017, 7, 3349–3355.

44

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

45

Stakheev, A. Y.; Kustov, L. M. Effects of the support on the morphology and electronic properties of supported metal clusters: Modern concepts and progress in 1990s. Appl. Catal. A:Gen. 1999, 188, 3–35.

46

Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.

47

Xu, S. L.; Shen, S. C.; Zhao, S.; Ding, Y. W.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal–sulfur interaction. Chem. Sci. 2020, 11, 7933–7939.

48

Coq, B.; Figueras, F. Bimetallic palladium catalysts: Influence of the Co-metal on the catalyst performance. J. Mol. Catal. A Chem. 2001, 173, 117–134.

Nano Research
Pages 4973-4979
Cite this article:
Wang L, Yin P, Zeng W-J, et al. Bulky nanodiamond-confined synthesis of sub-5 nanometer ordered intermetallic Pd3Pb catalysts. Nano Research, 2022, 15(6): 4973-4979. https://doi.org/10.1007/s12274-022-4138-4
Topics:

821

Views

11

Crossref

8

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 19 November 2021
Revised: 20 December 2021
Accepted: 03 January 2022
Published: 19 March 2022
© Tsinghua University Press 2022
Return