Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Modulation of geometric and electronic structures of supported Pd-based catalysts by forming atomically ordered intermetallic phases enables an effective way to optimize catalytic performance. However, the synthesis of small-sized Pd-based intermetallic nanoparticle catalysts with improved mass-based activity remains formidable challenges, since high-temperature annealing generally required for atom ordering inevitably leads to severe metal sintering and thus large crystallites. Here, we present a bulky nanodiamond-confined method to prepare sub-5 nm Pd3Pb intermetallic nanocatalysts by mitigating metal sintering at high temperatures, which is induced by the electronic interactions between metal and defect-rich graphene shells reinforced by diamond cores in the bulky nanodiamond support. The prepared small-sized Pd3Pb intermetallic catalyst displays a high activity with a turnover frequency of 932 h−1 for the semihydrogenation of phenylacetylene under mild conditions (room temperature, 3 bar H2), along with a high selectivity of > 96% to styrene near the complete conversion of phenylacetylene.
Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A. L.; Kiwi-Minsker, L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2012, 2, 1773–1786.
Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Xie, J. L.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.
Chernichenko, K.; Madarász, Á.; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat. Chem. 2013, 5, 718–723.
Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.
Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.
Kuwahara, Y.; Kango, H.; Yamashita, H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal. 2019, 9, 1993–2006.
Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.
Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 2014, 5, 5787.
McCue, A. J.; Anderson, J. A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front. Chem. Sci. Eng. 2015, 9, 142–153.
Doyle, A. M.; Shaikhutdinov, S. K.; Jackson, S. D.; Freund, H. J. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals? Angew. Chem., Int. Ed. 2003, 42, 5240–5243.
Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.
Tew, M. W.; Janousch, M.; Huthwelker, T.; Van Bokhoven, J. A. The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J. Catal. 2011, 283, 45–54.
Semagina, N.; Grasemann, M.; Xanthopoulos, N.; Renken, A.; Kiwi-Minsker, L. Structured catalyst of Pd/ZnO on sintered metal fibers for 2-methyl-3-butyn-2-ol selective hydrogenation. J. Catal. 2007, 251, 213–222.
García-Mota, M.; Gómez-Díaz, J.; Novell-Leruth, G.; Vargas-Fuentes, C.; Bellarosa, L.; Bridier, B.; Pérez-Ramírez, J.; López, N. A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst. Theor. Chem. Acc. 2011, 128, 663–673.
Niu, W. X.; Gao, Y. J.; Zhang, W. Q.; Yan, N.; Lu, X. M. Pd-Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem., Int. Ed. 2015, 54, 8271–8274.
Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725.
Cao, Y. Q.; Sui, Z. J.; Zhu, Y. A.; Zhou, X. G.; Chen, D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: Promotional effect of indium and composition-dependent performance. ACS Catal. 2017, 7, 7835–7846.
Wang, L.; Yin, P.; Zhang, L. L.; Shen, S. C.; Xu, S. L.; Chen, P.; Liang, H. W. Nitrogen-fixing of ultrasmall Pd-based bimetallic nanoclusters on carbon supports. J. Catal. 2020, 389, 297–304.
López, N.; Vargas-Fuentes, C. Promoters in the hydrogenation of alkynes in mixtures: Insights from density functional theory. Chem. Commun. (Camb.) 2012, 48, 1379–1391.
Wowsnick, G.; Teschner, D.; Armbrüster, M.; Kasatkin, I.; Girgsdies, F.; Grin, Y.; Schlögl, R.; Behrens, M. Surface dynamics of the intermetallic catalyst Pd2Ga, part II-reactivity and stability in liquid-phase hydrogenation of phenylacetylene. J. Catal. 2014, 309, 221–230.
Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.
Furukawa, S.; Komatsu, T. Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735–765.
Armbrüster, M.; Schlögl, R.; Grin, Y. Intermetallic compounds in heterogeneous catalysis-a quickly developing field. Sci. Technol. Adv. Mater. 2014, 15, 034803.
Chen, L. W.; He, F. X.; Shao, R. Y.; Yan, Q. Q.; Yin, P.; Zeng, W. J.; Zuo, M.; He, L. X.; Liang, H. W. Intermetallic IrGa−IrOx core–shell electrocatalysts for oxygen evolution. Nano Res. 2022, 15, 1853–1860.
Hu, Y. Z.; Lu, Y.; Zhao, X. R.; Shen, T.; Zhao, T. H.; Gong, M. X.; Chen, K.; Lai, C. L.; Zhang, J.; Xin, H. L. et al. Highly active N-doped carbon encapsulated Pd–Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. 2020, 13, 2365–2370.
Kovnir, K.; Osswald, J.; Armbrüster, M.; Teschner, D.; Weinberg, G.; Wild, U.; Knop-Gericke, A.; Ressler, T.; Grin, Y.; Schlögl, R. Etching of the intermetallic compounds PdGa and Pd3Ga7: An effective way to increase catalytic activity? J. Catal. 2009, 264, 93–103.
Armbrüster, M.; Wowsnick, G.; Friedrich, M.; Heggen, M.; Cardoso-Gil, R. Synthesis and catalytic properties of nanoparticulate intermetallic Ga–Pd compounds. J. Am. Chem. Soc. 2011, 133, 9112–9118.
Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A. et al. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem 2012, 4, 1048–1063.
Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.
Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.
Furukawa, S.; Endo, M.; Komatsu, T. Bifunctional catalytic system effective for oxidative dehydrogenation of 1-butene and n-butane using Pd-based intermetallic compounds. ACS Catal. 2014, 4, 3533–3542.
Furukawa, S.; Suzuki, R.; Komatsu, T. Selective activation of alcohols in the presence of reactive amines over intermetallic PdZn: Efficient catalysis for alcohol-based N-alkylation of various amines. ACS Catal. 2016, 6, 5946–5953.
Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.
Zhang, L. Y.; Liu, H. Y.; Huang, X.; Sun, X. P.; Jiang, Z.; Schlögl, R.; Su, D. S. Stabilization of palladium nanoparticles on nanodiamond-graphene core–shell supports for CO oxidation. Angew. Chem., Int. Ed. 2015, 54, 15823–15826.
Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.
Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.
Duan, X. G.; Tian, W. J.; Zhang, H. Y.; Sun, H. Q.; Ao, Z. M.; Shao, Z. P.; Wang, S. B. sp2/sp3 framework from diamond nanocrystals: A key bridge of carbonaceous structure to carbocatalysis. ACS Catal. 2019, 9, 7494–7519.
Dai, Y. Q.; Lu, P.; Cao, Z. M.; Campbell, C. T.; Xia, Y. N. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 2018, 47, 4314–4331.
Duan, X. G.; Ao, Z. M.; Li, D. G.; Sun, H. Q.; Zhou, L.; Suvorova, A.; Saunders, M.; Wang, G. X.; Wang, S. B. Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon 2016, 103, 404–411.
Duan, X. G.; Ao, Z. M.; Zhang, H. Y.; Saunders, M.; Sun, H. Q.; Shao, Z. P.; Wang, S. B. Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core–shell layer dependence. Appl. Catal. B:Environ. 2018, 222, 176–181.
Zhang, J. Y.; Cai, X. B.; Wu, K. H.; Zhang, Y. J.; Wang, J.; Diao, J. Y.; Wang, N.; Liu, H. Y.; Su, D. S. Nanodiamond-core-reinforced, graphene-shell-immobilized platinum nanoparticles as a highly active catalyst for the low-temperature dehydrogenation of n-butane. ChemCatChem 2018, 10, 520–524.
Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.
Liu, J.; Yue, Y. Y.; Liu, H. Y.; Da, Z. J.; Liu, C. C.; Ma, A. Z.; Rong, J. F.; Su, D. S.; Bao, X. J.; Zheng, H. D. Origin of the robust catalytic performance of nanodiamond-graphene-supported Pt nanoparticles used in the propane dehydrogenation reaction. ACS Catal. 2017, 7, 3349–3355.
Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.
Stakheev, A. Y.; Kustov, L. M. Effects of the support on the morphology and electronic properties of supported metal clusters: Modern concepts and progress in 1990s. Appl. Catal. A:Gen. 1999, 188, 3–35.
Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.
Xu, S. L.; Shen, S. C.; Zhao, S.; Ding, Y. W.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal–sulfur interaction. Chem. Sci. 2020, 11, 7933–7939.
Coq, B.; Figueras, F. Bimetallic palladium catalysts: Influence of the Co-metal on the catalyst performance. J. Mol. Catal. A Chem. 2001, 173, 117–134.