AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms

Kang Xiao1Run-Tong Lin1Jin-Xin Wei1Nan Li1Hui Li2,3Tianyi Ma2,3( )Zhao-Qing Liu1( )
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
School of Science, RMIT University, Melbourne, VIC 3000, Australia
Show Author Information

Graphical Abstract

Isolated Ru single atoms (SAs) are in-situ allocated into MnO2 matrix by the disproportionationphenomenon of the oxide support, substantially boosting oxygen evolution electrocatalysis.

Abstract

Supported single-atom catalysts (SACs) possess high catalytic activity, selectivity, and atom utilizations. However, the atom coordination environments of SACs are difficult to accurately regulate due to the high complexity of coordination site and local environment of support. Herein, we develop an in-situ electrochemical cation-exchange method to fill the cation vacancies in MnO2 with Ru single atoms (SAs). This obtained catalyst exhibits high mass activity, which is ~ 44 times higher than commercial RuO2 catalyst and excellent stability, superior to the most state-of-the-art oxygen evolution reaction (OER) catalysts. The experimental and theoretical results confirm that the doped Ru can induce charge density redistribution, resulting in the optimized binding of oxygen species, and the strong covalent interaction between Ru and MnO2 for resisting oxidation and corrosion. This work will provide a new concept in the synthesis of well-defined local environments of supported SAs.

Electronic Supplementary Material

Download File(s)
12274_2022_4140_MOESM1_ESM.pdf (2.6 MB)

References

1

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

2

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

3

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

4

Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

5

Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.

6
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1002/smll.202005148.
7

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

8

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

9
Zhu, Y. Z.; Yang, X. X.; Peng, C.; Priest, C.; Mei, Y.; Wu, G. Carbon-supported single metal site catalysts for electrochemical CO2 reduction to CO and beyond. Small, in press, https://doi.org/10.1002/smll.202005148.
10

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

11

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

12

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

13

Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.

14

Jing, H. Y.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Liu, W.; Li, N. N.; Hao, C.; Shi, Y. T.; Wang, D. S. Atomic evolution of metal-organic frameworks into Co–N3 coupling vacancies by cooperative cascade protection strategy for promoting triiodide reduction. J. Phys. Chem. C 2021, 125, 6147–6156.

15

Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.

16

Yang, Y. C.; Yang, Y. W.; Pei, Z. X.; Wu, K. H.; Tan, C. H.; Wang, H. Z.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J. C. et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020, 3, 1442–1476.

17

Zhang, T. J.; Walsh, A. G.; Yu, J. H.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588.

18

Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X. B.; Pérez-Ramírez, J.; Lu, J. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater. 2021, 33, 2003075.

19

Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.

20

Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

21

Weng, Y. T.; Pan, H. A.; Lee, R. C.; Huang, T. Y.; Chu, Y.; Lee, J. F.; Sheu, H. S.; Wu, N. L. Spatially confined MnO2 nanostructure enabling consecutive reversible charge transfer from Mn(IV) to Mn(II) in a mixed pseudocapacitor-battery electrode. Adv. Energy Mater. 2015, 5, 1500772.

22

Zhao, Y. X.; Chang, C.; Teng, F.; Zhao, Y. F.; Chen, G. B.; Shi, R.; Waterhouse, G. I. N.; Huang, W. F.; Zhang, T. R. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1700005.

23

Xiao, K.; Zhao, S. L.; Cao, M. Z.; Zhang, L.; Li, N.; Liu, Z. Q. Electron affinity regulation on ultrathin manganese oxide nanosheets toward ultra-stable pseudocapacitance. J. Mater. Chem. A 2020, 8, 23257–23264.

24

Shang, Y.; Li, X. X.; Song, J. J.; Huang, S. Z.; Yang, Z.; Xu, Z. J.; Yang, H. Y. Unconventional Mn vacancies in Mn-Fe prussian blue analogs: Suppressing jahn-teller distortion for ultrastable sodium storage. Chem 2020, 6, 1804–1818.

25

Jaque, P.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Computational electrochemistry: The aqueous Ru3+|Ru2+ reduction potential. J. Phys. Chem. C 2007, 111, 5783–5799.

26

Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

27

Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

28

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μg NH3·mg cat.1·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

29

Wang, Z. L.; Xu, S. M.; Xu, Y. Q.; Tan, L.; Wang, X.; Zhao, Y. F.; Duan, H. H.; Song, Y. F. Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 2019, 10, 378–384.

30

He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

31

Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

32

Liu, K. P.; Zhao, X. T.; Ren, G. Q.; Yang, T.; Ren, Y. J.; Lee, A. F.; Su, Y.; Pan, X. L.; Zhang, J. C.; Chen, Z. Q. et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 2020, 11, 1263.

Nano Research
Pages 4980-4985
Cite this article:
Xiao K, Lin R-T, Wei J-X, et al. Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms. Nano Research, 2022, 15(6): 4980-4985. https://doi.org/10.1007/s12274-022-4140-x
Topics:

1181

Views

54

Crossref

50

Web of Science

50

Scopus

9

CSCD

Altmetrics

Received: 23 December 2021
Revised: 06 January 2022
Accepted: 08 January 2022
Published: 19 March 2022
© Tsinghua University Press 2022
Return