AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light-matter coupling

Xuewen Zhang1Lishu Wu2Xu Wang1Silin He1Hanwei Hu1Guangchao Shi1Xingwang Zhang3Jingzhi Shang1( )Ting Yu2,4( )
Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710129, China
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
School of Physics and Technology, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

Here we have observed angle-resolved spectroscopic signatures of weak and strong exciton–photon coupling in monolayer tungsten disulfide incorporated photonic structures.

Abstract

Light-matter interactions in two-dimensional transition metal dichalcogenides (TMDs) are sensitive to the surrounding dielectric environment. Depending on the interacting strength, weak and strong exciton–photon coupling effects can occur when the exciton energy is resonant with the one of photon. Here we report angle-resolved spectroscopic signatures of monolayer tungsten disulfide (1L-WS2) in weak and strong exciton–photon coupling environments. Inherent optical response of 1L-WS2 in the momentum space is uncovered by employing a dielectric mirror as substrate, where the energy dispersion is angle-independent while the amplitudes increase at high detection angles. When 1L-WS2 sits on top of a dielectric layer on silicon, the resonant trapped photon weakly couples with the exciton, in which the minimum of reflection dip shifts at both sides of the crossing angle while the emitted exciton energy remains unchanged. The unusual shift of reflection dip is attributed to the presence of Fano resonance under white-light illumination. By embedding 1L-WS2 into a dielectric microcavity, strong exciton–photon coupling results in the formation of lower and upper polariton branches with an appreciable Rabi splitting of 34 meV at room temperature, where the observed blueshift of the lower polariton branch is indicative of the enhanced polariton-polariton scattering. Our findings highlight the effect of dielectric environment on angle-resolved optical response of exciton–photon interactions in a two-dimensional semiconductor, which is helpful to develop practical TMD-based architectures for photonic and polaritonic applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4143_MOESM1_ESM.pdf (1.4 MB)

References

1

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

2

Basov, D. N.; Fogler, M. M.; de Abajo, F. J. G. Polaritons in van der Waals materials. Science 2016, 354, aag1992.

3

Schneider, C.; Glazov, M. M.; Korn, T.; Höfling, S.; Urbaszek, B. Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun. 2018, 9, 2695.

4

Gan, X. T.; Gao, Y. D.; Mak, K. F.; Yao, X. W.; Shiue, R. J.; van der Zande, A.; Trusheim, M. E.; Hatami, F.; Heinz, T. F.; Hone, J. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 2013, 103, 181119.

5

Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

6

Hu, F. R.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.

7

Liu, X. Z.; Galfsky, T.; Sun, Z.; Xia, F. N.; Lin, E. C.; Lee, Y. H.; Kéna-Cohen, S.; Menon, V. M. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics 2015, 9, 30–34.

8

Zhang, L.; Gogna, R.; Burg, W.; Tutuc, E.; Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 2018, 9, 713.

9

Han, X. B.; Wang, K.; Xing, X. Y.; Wang, M. Y.; Lu, P. X. Rabi Splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature. ACS Photonics 2018, 5, 3970–3976.

10

Zhao, L. Y.; Shang, Q. Y.; Li, M. L.; Liang, Y.; Li, C.; Zhang, Q. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 2021, 14, 1937–1954.

11

Ma, X. Z.; Youngblood, N.; Liu, X. Z.; Cheng, Y.; Cunha, P.; Kudtarkar, K.; Wang, X. M.; Lan, S. F. Engineering photonic environments for two-dimensional materials. Nanophotonics 2021, 10, 1031–1058.

12

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

13

Lippert, S.; Schneider, L. M.; Renaud, D.; Kang, K. N.; Ajayi, O.; Kuhnert, J.; Halbich, M. U.; Abdulmunem, O. M.; Lin, X.; Hassoon, K. et al. Influence of the substrate material on the optical properties of tungsten diselenide monolayers. 2D Mater. 2017, 4, 025045.

14

Huang, F. M. Optical contrast of atomically thin films. J. Phys. Chem. C 2019, 123, 7440–7446.

15

Nayak, P. K.; Yeh, C. H.; Chen, Y. C.; Chiu, P. W. Layer-dependent optical conductivity in atomic thin WS2 by reflection contrast spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 16020–16026.

16

Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

17

Lorchat, E.; López, L. E. P.; Robert, C.; Lagarde, D.; Froehlicher, G.; Taniguchi, T.; Watanabe, K.; Marie, X.; Berciaud, S. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nat. Nanotechnol. 2020, 15, 283–288.

18

Shi, J. P.; Tong, R.; Zhou, X. B.; Gong, Y.; Zhang, Z. P.; Ji, Q. Q.; Zhang, Y.; Fang, Q. Y.; Gu, L.; Wang, X. N. et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater. 2016, 28, 10664–10672.

19

Niehues, I.; Marauhn, P.; Deilmann, T.; Wigger, D.; Schmidt, R.; Arora, A.; de Vasconcellos, S. M.; Rohlfing, M.; Bratschitsch, R. Strain tuning of the Stokes shift in atomically thin semiconductors. Nanoscale 2020, 12, 20786–20796.

20

Kolesnichenko, P. V.; Zhang, Q. H.; Yun, T. H.; Zheng, C. X.; Fuhrer, M. S.; Davis, J. A. Disentangling the effects of doping, strain and disorder in monolayer WS2 by optical spectroscopy. 2D Mater. 2020, 7, 025008.

21

Deng, H.; Haug, H.; Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 2010, 82, 1489–1537.

22

Wolter, H. Born, M-Principles of optics electromagnetic theory of propagation interference and diffraction of light. Z. Angew. Physik 1966, 21, 565.

23

Björk, G.; Machida, S.; Yamamoto, Y.; Igeta, K. Modification of spontaneous emission rate in planar dielectric microcavity structures. Phys. Rev. A 1991, 44, 669–681.

24

Romeira, B.; Fiore, A. Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers. IEEE J. Quantum Electron. 2018, 54, 2000412.

25

Fujita, M.; Takahashi, S.; Tanaka, Y.; Asano, T.; Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 2005, 308, 1296–1298.

26

Limonov, M. F.; Rybin, M. V.; Poddubny, A. N.; Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 2017, 11, 543–554.

27

Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866–1878.

28

Khitrova, G.; Gibbs, H. M.; Jahnke, F.; Kira, M.; Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 1999, 71, 1591–1639.

29

Ell, C.; Prineas, J.; Nelson, T. R. Jr.; Park, S.; Gibbs, H. M.; Khitrova, G.; Koch, S. W.; Houdre, R. Influence of structural disorder and light coupling on the excitonic response of semiconductor microcavities. Phys. Rev. Lett. 1998, 80, 4795–4798.

30

Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 2015, 6, 8579.

31

Whittaker, D. M. What determines inhomogeneous linewidths in semiconductor microcavities? Phys. Rev. Lett. 1998, 80, 4791–4794.

32

Borri, P.; Jensen, J. R.; Langbein, W.; Hvam, J. M. Direct evidence of reduced dynamic scattering in the lower polariton of a semiconductor microcavity. Phys. Rev. B 2000, 61, R13377–R13380.

33

Liu, X. Z.; Bao, W.; Li, Q. W.; Ropp, C.; Wang, Y.; Zhang, X. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide. Phys. Rev. Lett. 2017, 119, 027403.

34

Flatten, L. C.; He, Z.; Coles, D. M.; Trichet, A. A. P.; Powell, A. W.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Room-temperature exciton-polaritons with two-dimensional WS2. Sci. Rep. 2016, 6, 33134.

35

Byrnes, T.; Kim, N. Y.; Yamamoto, Y. Exciton-polariton condensates. Nat. Phys. 2014, 10, 803–813.

36

Plumhof, J. D.; Stöferle, T.; Mai, L. J.; Scherf, U.; Mahrt, R. F. Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 2014, 13, 247–252.

37

Sun, Y. B.; Yoon, Y.; Steger, M.; Liu, G. Q.; Pfeiffer, L. N.; West, K.; Snoke, D. W.; Nelson, K. A. Direct measurement of polariton-polariton interaction strength. Nat. Phys. 2017, 13, 870–875.

38

Waldecker, L.; Raja, A.; Rösner, M.; Steinke, C.; Bostwick, A.; Koch, R. J.; Jozwiak, C.; Taniguchi, T.; Watanabe, K.; Rotenberg, E. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 2019, 123, 206403.

39

Yun, T. H.; Wurdack, M.; Pieczarka, M.; Bhattacharyya, S.; Ou, Q. D.; Notthoff, C.; Nguyen, C. K.; Daeneke, T.; Kluth, P.; Fuhrer, M. S. et al. Influence of direct deposition of dielectric materials on the optical response of monolayer WS2. Appl. Phys. Lett. 2021, 119, 133106.

40

Galfsky, T.; Sun, Z.; Considine, C. R.; Chou, C. T.; Ko, W. C.; Lee, Y. H.; Narimanov, E. E.; Menon, V. M. Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals. Nano Lett. 2016, 16, 4940–4945.

41

Sun, Z.; Gu, J.; Ghazaryan, A.; Shotan, Z.; Considine, C. R.; Dollar, M.; Chakraborty, B.; Liu, X. Z.; Ghaemi, P.; Kéna-Cohen, S. et al. Optical control of room-temperature valley polaritons. Nat. Photonics 2017, 11, 491–496.

42

Flatten, L. C.; Coles, D. M.; He, Z. Y.; Lidzey, D. G.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 2017, 8, 14097.

43

Lackner, L.; Dusel, M.; Egorov, O. A.; Han, B.; Knopf, H.; Eilenberger, F.; Schröder, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Tunable exciton-polaritons emerging from WS2 monolayer excitons in a photonic lattice at room temperature. Nat. Commun. 2021, 12, 4933.

44

Barachati, F.; Fieramosca, A.; Hafezian, S.; Gu, J.; Chakraborty, B.; Ballarini, D.; Martinu, L.; Menon, V.; Sanvitto, D.; Kéna-Cohen, S. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 2018, 13, 906–909.

45

Wang, S. J.; Li, S. L.; Chervy, T.; Shalabney, A.; Azzini, S.; Orgiu, E.; Hutchison, J. A.; Genet, C.; Samori, P.; Ebbesen, T. W. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett. 2016, 16, 4368–4374.

46

Bisht, A.; Cuadra, J.; Wersäll, M.; Canales, A.; Antosiewicz, T. J.; Shegai, T. Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems. Nano Lett. 2019, 19, 189–196.

47

Zhao, J. X.; Su, R.; Fieramosca, A.; Zhao, W. J.; Du, W.; Liu, X.; Diederichs, C.; Sanvitto, D.; Liew, T. C. H.; Xiong, Q. H. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Lett. 2021, 21, 3331–3339.

48

Wurdack, M.; Estrecho, E.; Todd, S.; Yun, T.; Pieczarka, M.; Earl, S. K.; Davis, J. A.; Schneider, C.; Truscott, A. G.; Ostrovskaya, E. A. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nat. Commun. 2021, 12, 5366.

49

Shang, J. Z.; Cong, C. X.; Wang, Z. L.; Peimyoo, N.; Wu, L. S.; Zou, C. J.; Chen, Y.; Chin, X. Y.; Wang, J. P.; Soci, C. et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 2017, 8, 543.

Nano Research
Pages 5619-5625
Cite this article:
Zhang X, Wu L, Wang X, et al. Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light-matter coupling. Nano Research, 2022, 15(6): 5619-5625. https://doi.org/10.1007/s12274-022-4143-7
Topics:

1064

Views

5

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 16 November 2021
Revised: 05 January 2022
Accepted: 10 January 2022
Published: 16 March 2022
© Tsinghua University Press 2022
Return