Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Sodium-ion capacitors have the potential to deliver high energy, power density, and excellent cycling stability. In this study, ultrathin Co3V2O8 nanosheets are successfully synthesized through an one-pot hydrothermal reaction and a subsequent doping reconfiguration-induced vacancy-forming process. Abundant oxygen vacancies and high porosity are observed in the Co3V2O8 electrode and result in excellent electrochemical performance in 1 M NaOH and Na2SO4 electrolytes. The cathode has a large specific capacity (@NaOH), high-rate capability (@NaOH), wide voltage window (@Na2SO4), and favorable long-cycle stability. Ex-situ X-ray diffraction and X-ray photoelectron spectroscopy show that the Co3V2O8 electrode displays a battery-like behavior related to OH− ions in the alkaline NaOH electrolyte. By contrast, in the neutral Na2SO4 electrolyte, Co3V2O8 mainly shows an intercalation/extraction behavior with Na+ ions. Density functional theory calculation suggests that oxygen vacancy leads to a new state located in the bandgap, which greatly improves the electron transfer efficiency and reduces the sodiation energy barrier of Co3V2O8 in the neutral Na2SO4 electrolyte. Moreover, when paired with a high-voltage activated carbon (AC) anode, full-cell Co3V2O8//Na2SO4//AC delivers high energy/power densities (89.6 Wh·kg−1/330 W·kg−1).
Gao, C.; Huang, J. C.; Xiao, Y. K.; Zhang, G. Q.; Dai, C. L.; Li, Z. L.; Zhao, Y.; Jiang, L.; Qu, L. T. A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat. Commun. 2021, 12, 2647.
Liao, Y. Q.; Wu, C.; Zhong, Y. T.; Chen, M.; Cai, L. Y.; Wang, H. R.; Liu, X.; Cao, G. Z.; Li, W. S. Highly dispersed Co–Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 2020, 13, 188–195.
Cai, P.; Zou, K. Y.; Deng, X. L.; Wang, B. W.; Zheng, M.; Li, L. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Comprehensive understanding of sodium-Ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments. Adv. Energy Mater. 2021, 11, 2003804.
Zhu, G. Y.; Ma, L. B.; Lin, H. N.; Zhao, P. Y.; Wang, L.; Hu, Y.; Chen, R. P.; Chen, T.; Wang, Y. R.; Tie, Z. X. et al. High-performance Li-ion capacitor based on black-TiO2−x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019, 12, 1713–1719.
Dong, J.; He, Y.; Jiang, Y. L.; Tan, S. S.; Wei, Q. L.; Xiong, F. Y.; Chu, Z. L.; An, Q. Y.; Mai, L. Q. Intercalation pseudocapacitance of FeVO4·nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy 2020, 73, 104838.
Yan, W. K.; Li, M. J.; Li, H. J.; Li, C. P.; Xu, S.; Su, L.; Qian, L. R.; Yang, B. H. Aqueous lithium and sodium ion capacitors with boron-doped graphene/BDD/TiO2 anode and boron-doped graphene/BDD cathode exhibiting AC line-filtering performance. Chem. Eng. J. 2020, 388, 124265.
Zhang, Q. N.; Levi, M. D.; Dou, Q. Y.; Lu, Y. L.; Chai, Y. G.; Lei, S. L.; Ji, H. X.; Liu, B.; Bu, X. D.; Ma, P. J. et al. The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes. Adv. Energy Mater. 2019, 9, 1802707.
Yu, X.; Yun, S.; Yeon, J. S.; Bhattacharya, P.; Wang, L. B.; Lee, S. W.; Hu, X. L.; Park, H. S. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 2018, 8, 1702930.
Nakhanivej, P.; Yu, X.; Park, S. K.; Kim, S.; Hong, J. Y.; Kim, H. J.; Lee, W.; Hwang, J. Y.; Yang, J. E.; Wolverton, C. et al. Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nat. Mater. 2019, 18, 156–162.
Park, S. K.; Kwon, S. H.; Lee, S. G.; Choi, M. S.; Suh, D. H.; Nakhanivej, P.; Lee, H.; Park, H. S. 105 cyclable pseudocapacitive Na-ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes. ACS Energy Lett. 2018, 3, 724–732.
Wang, X. F.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 2015, 6, 6544.
Mahmood, Q.; Park, S. K.; Kwon, K. D.; Chang, S. J.; Hong, J. Y.; Shen, G. Z.; Jung, Y. M.; Park, T. J.; Khang, S. W.; Kim, W. S. et al. Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 2016, 6, 1501115.
Yan, Y.; Li, B.; Guo, W.; Pang, H.; Xue, H. G. Vanadium based materials as electrode materials for high performance supercapacitors. J. Power Sources 2016, 329, 148–169.
Sekhar, S. C.; Ramulu, B.; Narsimulu, D.; Arbaz, S. J.; Yu, J. S. Metal-organic framework-derived Co3V2O8@CuV2O6 hybrid architecture as a multifunctional binder-free electrode for Li-Ion batteries and hybrid supercapacitors. Small 2020, 16, 2003983.
Li, M. L.; Gao, Y.; Chen, N.; Meng, X.; Wang, C. Z.; Zhang, Y. Q.; Zhang, D.; Wei, Y. J.; Du, F.; Chen, G. Cu3V2O8 nanoparticles as intercalation-type anode material for lithium-ion batteries. Chem. –Eur. J. 2016, 22, 11405–11412.
Qin, Z. Z.; Pei, J.; Chen, G.; Chen, D. H.; Hu, Y. Y.; Lv, C. D.; Bie, C. F. Design and fabrication of Co3V2O8 nanotubes by electrospinning as a high-performance anode for lithium-ion batteries. New J. Chem. 2017, 41, 5974–5980.
Li, Y.; Kang, L.; Kong, L. B.; Liu, M. C.; Wang, X. X.; Zhang, W. B. Design and synthesis of one-dimensional Co3O4/Co3V2O8 hybrid nanowires with improved Li-storage properties. RSC Adv. 2016, 6, 36418–36424.
Zhang, Q.; Pei, J.; Chen, G.; Bie, C. F.; Sun, J. X.; Liu, J. Porous Co3V2O8 nanosheets with ultrahigh performance as anode materials for lithium ion batteries. Adv. Mater. Interfaces 2017, 4, 1700054.
Soundharrajan, V.; Sambandam, B.; Song, J. J.; Kim, S.; Jo, J.; Kim, S.; Lee, S.; Mathew, V.; Kim, J. Co3V2O8 sponge network morphology derived from metal–organic framework as an excellent lithium storage anode material. ACS Appl. Mater. Interfaces 2016, 8, 8546–8553.
Wu, F. F.; Xiong, S. L.; Qian, Y. T.; Yu, S. H. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8·nH2O: A new anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 10787–10791.
Huang, B.; Wang, W. S.; Pu, T.; Li, J.; Zhao, C. L.; Xie, L.; Chen, L. Y. Rational design and facile synthesis of two-dimensional hierarchical porous M3V2O8 (M = Co, Ni and Co-Ni) thin sheets assembled by ultrathin nanosheets as positive electrode materials for high-performance hybrid supercapacitors. Chem. Eng. J. 2019, 375, 121969.
Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.
Tang, A. C.; Wan, C. B.; Hu, X. Y.; Ju, X. Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors. Nano Res. 2021, 14, 4063–4072.
Zhang, Y.; Hu, Y. X.; Wang, Z. L.; Lin, T. E.; Zhu, X. B.; Luo, B.; Hu, H.; Xing, W.; Yan, Z. F.; Wang, L. Z. Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv. Funct. Mater. 2020, 30, 2004172.
Yin, J.; Jin, J.; Liu, H. B.; Huang, B. L.; Lu, M.; Li, J. Y.; Liu, H. W.; Zhang, H.; Peng, Y.; Xi, P. X. et al. NiCo2O4-based nanosheets with uniform 4 nm mesopores for excellent Zn-air battery performance. Adv. Mater. 2020, 32, 2001651.
Wei, Q. L.; Li, Q. D.; Jiang, Y. L.; Zhao, Y. L.; Tan, S. S.; Dong, J.; Mai, L. Q.; Peng, D. L. High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 2021, 13, 55.
Xing, M.; Gao, A. M.; Liang, Y. S.; Deng, S. X.; Shu, D.; Su, S. T.; Yi, F. Y.; Zhou, X. P.; Zhu, Z. H. Defect-engineered 3D cross-network Co3O4−xNx nanostructure for high-performance solid-state asymmetric supercapacitors. ACS Appl. Energy Mater. 2020, 4, 888–898.
Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22−/O− functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155–166.
Yalagala, B. P.; Sahatiya, P.; Kolli, C. S. R.; Khandelwal, S.; Mattela, V.; Badhulika, S. V2O5 nanosheets for flexible memristors and broadband photodetectors. ACS Appl. Nano Mater. 2019, 2, 937–947.
Maitra, A.; Das, A. K.; Karan, S. K.; Paria, S.; Bera, R.; Khatua, B. B. A mesoporous high-performance supercapacitor electrode based on polypyrrole wrapped iron oxide decorated nanostructured cobalt vanadium oxide hydrate with enhanced electrochemical capacitance. Ind. Eng. Chem. Res. 2017, 56, 2444–2457.
Nguyen, T. T.; Balamurugan, J.; Kim, D. H.; Kim, N. H.; Lee, J. H. Hierarchical 3D oxygenated cobalt vanadium selenide nanosheets as advanced electrode for flexible zinc-cobalt and zinc-air batteries. Small 2020, 16, 2004661.
Butburee, T.; Bai, Y.; Wang, H. J.; Chen, H. J.; Wang, Z. L.; Liu, G.; Zou, J.; Khemthong, P.; Lu, G. Q. M.; Wang, L. Z. 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv. Mater. 2018, 30, 1705666.
Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.
Sakthivel, M.; Ramaraj, S.; Chen, S. M.; Chen, T. W.; Ho, K. C. Transition-metal-doped molybdenum diselenides with defects and abundant active sites for efficient performances of enzymatic biofuel cell and supercapacitor applications. ACS Appl. Mater. Interfaces 2019, 11, 18483–18493.
Li, C. F.; Zhao, J. W.; Xie, L. J.; Wu, J. Q.; Li, G. R. Fe doping and oxygen vacancy modulated Fe-Ni5P4/NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B Environ. 2021, 291, 119987.
Carey, J. J.; Legesse, M.; Nolan, M. Low valence cation doping of bulk Cr2O3: Charge compensation and oxygen vacancy formation. J. Phys. Chem. C 2016, 120, 19160–19174.
Sharma, G. P.; Gupta, P. K.; Sharma, S. K.; Pala, R. G. S.; Sivakumar, S. Chalcogenide dopant-induced lattice expansion in cobalt vanadium oxide nanosheets for enhanced supercapacitor performance. ACS Appl. Energy Mater. 2021, 4, 4758–4771.
Ali, G.; Lee, J. H.; Oh, S. H.; Cho, B. W.; Nam, K. W.; Chung, K. Y. Investigation of the Na intercalation mechanism into nanosized V2O5/C composite cathode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 6032–6039.
Xing, Z. Y.; Tan, G. Q.; Yuan, Y. F.; Wang, B.; Ma, L.; Xie, J.; Li, Z. S.; Wu, T. P.; Ren, Y.; Shahbazian-Yassar, R. et al. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes. Adv. Mater. 2020, 32, 2002403.
Zhan, G. M.; Li, J.; Hu, Y.; Zhao, S. X.; Cao, S. Y.; Jia, F. L.; Zhang, L. Z. The surface hydroxyl and oxygen vacancy dependent Cr(VI) adsorption performance of BiOCl. Environ. Sci. :Nano 2020, 7, 1454–1463.
Li, X. L.; Wang, T.; Yuan, Y. F.; Yue, X. Y.; Wang, Q. C.; Wang, J. Y.; Zhong, J.; Lin, R. Q.; Yao, Y.; Wu, X. J. et al. Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries. Adv. Mater. 2021, 33, 2008194.
Wu, N. Z.; Zhou, X. L.; Kidkhunthod, P.; Yao, W. J.; Song, T. Y.; Tang, Y. B. K-ion battery cathode design utilizing trigonal prismatic ligand field. Adv. Mater. 2021, 33, 2101788.
Li, Q.; Zhao, Y. H.; Liu, H. D.; Xu, P. D.; Yang, L. T.; Pei, K.; Zeng, Q. W.; Feng, Y. Z.; Wang, P.; Che, R. C. Dandelion-like Mn/Ni Co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 2019, 13, 11921–11934.
Xu, M. Z.; Niu, Y. L.; Teng, X.; Gong, S. Q.; Ji, L. L.; Chen, Z. F. High-capacity Bi2O3 anode for 2.4 V neutral aqueous sodium-ion battery-supercapacitor hybrid device through phase conversion mechanism. J. Energy Chem. 2022, 65, 605–615.
Gogotsi, Y.; Penner, R. M. Energy storage in nanomaterials - capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081–2083.
Fayer, M. D.; Moilanen, D. E.; Wong, D.; Rosenfeld, D. E.; Fenn, E. E.; Park, S. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. ACC. Chem. Res. 2009, 42, 1210–1219.
Liu, Y. C.; Koza, J. A.; Switzer, J. A. Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, and comparison of their catalytic activity for the oxygen evolution reaction. Electrochim. Acta 2014, 140, 359–365.
Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.
Zhang, L.; Wei, Z. X.; Yao, S. Y.; Gao, Y.; Jin, X.; Chen, G.; Shen, Z. X.; Du, F. Polymorph engineering for boosted volumetric Na-ion and Li-ion storage. Adv. Mater. 2021, 33, 2100210.
Liu, Y. Y.; Li, Q.; Ma, K. X.; Yang, G. Z.; Wang, C. X. Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano 2019, 13, 12081–12089.
Shan, L. T.; Yang, Y. Q.; Zhang, W. Y.; Chen, H. J.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 2019, 18, 10–14.
Liu, L. Y.; Wu, Y. C.; Huang, L.; Liu, K. S.; Duployer, B.; Rozier, P.; Taberna, P.; Simon, P. Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv. Energy Mater. 2021, 11, 2101287.
Gan, Q. M.; He, H. N.; Zhao, K. M.; He, Z.; Liu, S. Q.; Yang, S. P. Plasma-Induced oxygen vacancies in urchin-like anatase titania coated by carbon for excellent sodium-ion battery anodes. ACS Appl. Mater. Interfaces 2018, 10, 7031–7042.
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.
Negreira, A. S.; Aboud, S.; Wilcox, J. Surface reactivity of V2O5 (001): Effects of vacancies, protonation, hydroxylation, and chlorination. Phys. Rev. B 2011, 83, 045423.
He, H. N.; Sun, D.; Zhang, Q.; Fu, F.; Tang, Y. G.; Guo, J.; Shao, M. H.; Wang, H. Y. Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl. Mater. Interfaces 2017, 9, 6093–6103.