AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oxygen vacancies confined in porous Co3V2O8 sheets for durable and high-energy aqueous sodium-ion capacitors

Anchun Tang1Chubin Wan1( )Xianhe Meng2Xiangcao Li3Xiaoyu Hu1Miaofeng Huang1Xin Ju1( )
Physics Department, University of Science and Technology, Beijing 100083, China
College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
College of Science, Xi’an Aeronautical University, Xi’an 710077, China
Show Author Information

Graphical Abstract

Mesoporous and vacancy-rich Co3V2O8 nanosheets were used as cathode for highperformance aqueous sodium-ion capacitors (SICs). The different charge storagemechanisms of Co3V2O8 in alkaline and neutral aqueous electrolytes and the Na+storage mechanism of the Co3V2O8 cathode was revealed. The oxygen vacanciesled to a narrowed bandgap and reduce the sodiation energy barrier of Co3V2O8.

Abstract

Sodium-ion capacitors have the potential to deliver high energy, power density, and excellent cycling stability. In this study, ultrathin Co3V2O8 nanosheets are successfully synthesized through an one-pot hydrothermal reaction and a subsequent doping reconfiguration-induced vacancy-forming process. Abundant oxygen vacancies and high porosity are observed in the Co3V2O8 electrode and result in excellent electrochemical performance in 1 M NaOH and Na2SO4 electrolytes. The cathode has a large specific capacity (@NaOH), high-rate capability (@NaOH), wide voltage window (@Na2SO4), and favorable long-cycle stability. Ex-situ X-ray diffraction and X-ray photoelectron spectroscopy show that the Co3V2O8 electrode displays a battery-like behavior related to OH ions in the alkaline NaOH electrolyte. By contrast, in the neutral Na2SO4 electrolyte, Co3V2O8 mainly shows an intercalation/extraction behavior with Na+ ions. Density functional theory calculation suggests that oxygen vacancy leads to a new state located in the bandgap, which greatly improves the electron transfer efficiency and reduces the sodiation energy barrier of Co3V2O8 in the neutral Na2SO4 electrolyte. Moreover, when paired with a high-voltage activated carbon (AC) anode, full-cell Co3V2O8//Na2SO4//AC delivers high energy/power densities (89.6 Wh·kg−1/330 W·kg−1).

Electronic Supplementary Material

Download File(s)
12274_2022_4147_MOESM1_ESM.pdf (1.4 MB)

References

1

Gao, C.; Huang, J. C.; Xiao, Y. K.; Zhang, G. Q.; Dai, C. L.; Li, Z. L.; Zhao, Y.; Jiang, L.; Qu, L. T. A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat. Commun. 2021, 12, 2647.

2

Liao, Y. Q.; Wu, C.; Zhong, Y. T.; Chen, M.; Cai, L. Y.; Wang, H. R.; Liu, X.; Cao, G. Z.; Li, W. S. Highly dispersed Co–Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 2020, 13, 188–195.

3

Cai, P.; Zou, K. Y.; Deng, X. L.; Wang, B. W.; Zheng, M.; Li, L. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Comprehensive understanding of sodium-Ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments. Adv. Energy Mater. 2021, 11, 2003804.

4

Zhu, G. Y.; Ma, L. B.; Lin, H. N.; Zhao, P. Y.; Wang, L.; Hu, Y.; Chen, R. P.; Chen, T.; Wang, Y. R.; Tie, Z. X. et al. High-performance Li-ion capacitor based on black-TiO2−x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019, 12, 1713–1719.

5

Dong, J.; He, Y.; Jiang, Y. L.; Tan, S. S.; Wei, Q. L.; Xiong, F. Y.; Chu, Z. L.; An, Q. Y.; Mai, L. Q. Intercalation pseudocapacitance of FeVO4·nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy 2020, 73, 104838.

6

Yan, W. K.; Li, M. J.; Li, H. J.; Li, C. P.; Xu, S.; Su, L.; Qian, L. R.; Yang, B. H. Aqueous lithium and sodium ion capacitors with boron-doped graphene/BDD/TiO2 anode and boron-doped graphene/BDD cathode exhibiting AC line-filtering performance. Chem. Eng. J. 2020, 388, 124265.

7

Zhang, Q. N.; Levi, M. D.; Dou, Q. Y.; Lu, Y. L.; Chai, Y. G.; Lei, S. L.; Ji, H. X.; Liu, B.; Bu, X. D.; Ma, P. J. et al. The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes. Adv. Energy Mater. 2019, 9, 1802707.

8

Yu, X.; Yun, S.; Yeon, J. S.; Bhattacharya, P.; Wang, L. B.; Lee, S. W.; Hu, X. L.; Park, H. S. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 2018, 8, 1702930.

9

Nakhanivej, P.; Yu, X.; Park, S. K.; Kim, S.; Hong, J. Y.; Kim, H. J.; Lee, W.; Hwang, J. Y.; Yang, J. E.; Wolverton, C. et al. Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nat. Mater. 2019, 18, 156–162.

10

Park, S. K.; Kwon, S. H.; Lee, S. G.; Choi, M. S.; Suh, D. H.; Nakhanivej, P.; Lee, H.; Park, H. S. 105 cyclable pseudocapacitive Na-ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes. ACS Energy Lett. 2018, 3, 724–732.

11

Wang, X. F.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 2015, 6, 6544.

12

Mahmood, Q.; Park, S. K.; Kwon, K. D.; Chang, S. J.; Hong, J. Y.; Shen, G. Z.; Jung, Y. M.; Park, T. J.; Khang, S. W.; Kim, W. S. et al. Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 2016, 6, 1501115.

13

Yan, Y.; Li, B.; Guo, W.; Pang, H.; Xue, H. G. Vanadium based materials as electrode materials for high performance supercapacitors. J. Power Sources 2016, 329, 148–169.

14

Sekhar, S. C.; Ramulu, B.; Narsimulu, D.; Arbaz, S. J.; Yu, J. S. Metal-organic framework-derived Co3V2O8@CuV2O6 hybrid architecture as a multifunctional binder-free electrode for Li-Ion batteries and hybrid supercapacitors. Small 2020, 16, 2003983.

15

Li, M. L.; Gao, Y.; Chen, N.; Meng, X.; Wang, C. Z.; Zhang, Y. Q.; Zhang, D.; Wei, Y. J.; Du, F.; Chen, G. Cu3V2O8 nanoparticles as intercalation-type anode material for lithium-ion batteries. Chem. –Eur. J. 2016, 22, 11405–11412.

16

Qin, Z. Z.; Pei, J.; Chen, G.; Chen, D. H.; Hu, Y. Y.; Lv, C. D.; Bie, C. F. Design and fabrication of Co3V2O8 nanotubes by electrospinning as a high-performance anode for lithium-ion batteries. New J. Chem. 2017, 41, 5974–5980.

17

Li, Y.; Kang, L.; Kong, L. B.; Liu, M. C.; Wang, X. X.; Zhang, W. B. Design and synthesis of one-dimensional Co3O4/Co3V2O8 hybrid nanowires with improved Li-storage properties. RSC Adv. 2016, 6, 36418–36424.

18

Zhang, Q.; Pei, J.; Chen, G.; Bie, C. F.; Sun, J. X.; Liu, J. Porous Co3V2O8 nanosheets with ultrahigh performance as anode materials for lithium ion batteries. Adv. Mater. Interfaces 2017, 4, 1700054.

19

Soundharrajan, V.; Sambandam, B.; Song, J. J.; Kim, S.; Jo, J.; Kim, S.; Lee, S.; Mathew, V.; Kim, J. Co3V2O8 sponge network morphology derived from metal–organic framework as an excellent lithium storage anode material. ACS Appl. Mater. Interfaces 2016, 8, 8546–8553.

20

Wu, F. F.; Xiong, S. L.; Qian, Y. T.; Yu, S. H. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2OnH2O: A new anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 10787–10791.

21

Huang, B.; Wang, W. S.; Pu, T.; Li, J.; Zhao, C. L.; Xie, L.; Chen, L. Y. Rational design and facile synthesis of two-dimensional hierarchical porous M3V2O8 (M = Co, Ni and Co-Ni) thin sheets assembled by ultrathin nanosheets as positive electrode materials for high-performance hybrid supercapacitors. Chem. Eng. J. 2019, 375, 121969.

22

Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

23

Tang, A. C.; Wan, C. B.; Hu, X. Y.; Ju, X. Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors. Nano Res. 2021, 14, 4063–4072.

24

Zhang, Y.; Hu, Y. X.; Wang, Z. L.; Lin, T. E.; Zhu, X. B.; Luo, B.; Hu, H.; Xing, W.; Yan, Z. F.; Wang, L. Z. Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv. Funct. Mater. 2020, 30, 2004172.

25

Yin, J.; Jin, J.; Liu, H. B.; Huang, B. L.; Lu, M.; Li, J. Y.; Liu, H. W.; Zhang, H.; Peng, Y.; Xi, P. X. et al. NiCo2O4-based nanosheets with uniform 4 nm mesopores for excellent Zn-air battery performance. Adv. Mater. 2020, 32, 2001651.

26

Wei, Q. L.; Li, Q. D.; Jiang, Y. L.; Zhao, Y. L.; Tan, S. S.; Dong, J.; Mai, L. Q.; Peng, D. L. High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 2021, 13, 55.

27

Xing, M.; Gao, A. M.; Liang, Y. S.; Deng, S. X.; Shu, D.; Su, S. T.; Yi, F. Y.; Zhou, X. P.; Zhu, Z. H. Defect-engineered 3D cross-network Co3O4−xNx nanostructure for high-performance solid-state asymmetric supercapacitors. ACS Appl. Energy Mater. 2020, 4, 888–898.

28

Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.

29

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

30

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

31

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

32

Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22−/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155–166.

33

Yalagala, B. P.; Sahatiya, P.; Kolli, C. S. R.; Khandelwal, S.; Mattela, V.; Badhulika, S. V2O5 nanosheets for flexible memristors and broadband photodetectors. ACS Appl. Nano Mater. 2019, 2, 937–947.

34

Maitra, A.; Das, A. K.; Karan, S. K.; Paria, S.; Bera, R.; Khatua, B. B. A mesoporous high-performance supercapacitor electrode based on polypyrrole wrapped iron oxide decorated nanostructured cobalt vanadium oxide hydrate with enhanced electrochemical capacitance. Ind. Eng. Chem. Res. 2017, 56, 2444–2457.

35

Nguyen, T. T.; Balamurugan, J.; Kim, D. H.; Kim, N. H.; Lee, J. H. Hierarchical 3D oxygenated cobalt vanadium selenide nanosheets as advanced electrode for flexible zinc-cobalt and zinc-air batteries. Small 2020, 16, 2004661.

36

Butburee, T.; Bai, Y.; Wang, H. J.; Chen, H. J.; Wang, Z. L.; Liu, G.; Zou, J.; Khemthong, P.; Lu, G. Q. M.; Wang, L. Z. 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv. Mater. 2018, 30, 1705666.

37

Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.

38

Sakthivel, M.; Ramaraj, S.; Chen, S. M.; Chen, T. W.; Ho, K. C. Transition-metal-doped molybdenum diselenides with defects and abundant active sites for efficient performances of enzymatic biofuel cell and supercapacitor applications. ACS Appl. Mater. Interfaces 2019, 11, 18483–18493.

39

Li, C. F.; Zhao, J. W.; Xie, L. J.; Wu, J. Q.; Li, G. R. Fe doping and oxygen vacancy modulated Fe-Ni5P4/NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B Environ. 2021, 291, 119987.

40

Carey, J. J.; Legesse, M.; Nolan, M. Low valence cation doping of bulk Cr2O3: Charge compensation and oxygen vacancy formation. J. Phys. Chem. C 2016, 120, 19160–19174.

41

Sharma, G. P.; Gupta, P. K.; Sharma, S. K.; Pala, R. G. S.; Sivakumar, S. Chalcogenide dopant-induced lattice expansion in cobalt vanadium oxide nanosheets for enhanced supercapacitor performance. ACS Appl. Energy Mater. 2021, 4, 4758–4771.

42

Ali, G.; Lee, J. H.; Oh, S. H.; Cho, B. W.; Nam, K. W.; Chung, K. Y. Investigation of the Na intercalation mechanism into nanosized V2O5/C composite cathode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 6032–6039.

43

Xing, Z. Y.; Tan, G. Q.; Yuan, Y. F.; Wang, B.; Ma, L.; Xie, J.; Li, Z. S.; Wu, T. P.; Ren, Y.; Shahbazian-Yassar, R. et al. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes. Adv. Mater. 2020, 32, 2002403.

44

Zhan, G. M.; Li, J.; Hu, Y.; Zhao, S. X.; Cao, S. Y.; Jia, F. L.; Zhang, L. Z. The surface hydroxyl and oxygen vacancy dependent Cr(VI) adsorption performance of BiOCl. Environ. Sci. :Nano 2020, 7, 1454–1463.

45

Li, X. L.; Wang, T.; Yuan, Y. F.; Yue, X. Y.; Wang, Q. C.; Wang, J. Y.; Zhong, J.; Lin, R. Q.; Yao, Y.; Wu, X. J. et al. Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries. Adv. Mater. 2021, 33, 2008194.

46

Wu, N. Z.; Zhou, X. L.; Kidkhunthod, P.; Yao, W. J.; Song, T. Y.; Tang, Y. B. K-ion battery cathode design utilizing trigonal prismatic ligand field. Adv. Mater. 2021, 33, 2101788.

47

Li, Q.; Zhao, Y. H.; Liu, H. D.; Xu, P. D.; Yang, L. T.; Pei, K.; Zeng, Q. W.; Feng, Y. Z.; Wang, P.; Che, R. C. Dandelion-like Mn/Ni Co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 2019, 13, 11921–11934.

48

Xu, M. Z.; Niu, Y. L.; Teng, X.; Gong, S. Q.; Ji, L. L.; Chen, Z. F. High-capacity Bi2O3 anode for 2.4 V neutral aqueous sodium-ion battery-supercapacitor hybrid device through phase conversion mechanism. J. Energy Chem. 2022, 65, 605–615.

49

Gogotsi, Y.; Penner, R. M. Energy storage in nanomaterials - capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081–2083.

50

Fayer, M. D.; Moilanen, D. E.; Wong, D.; Rosenfeld, D. E.; Fenn, E. E.; Park, S. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. ACC. Chem. Res. 2009, 42, 1210–1219.

51

Liu, Y. C.; Koza, J. A.; Switzer, J. A. Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, and comparison of their catalytic activity for the oxygen evolution reaction. Electrochim. Acta 2014, 140, 359–365.

52

Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.

53

Zhang, L.; Wei, Z. X.; Yao, S. Y.; Gao, Y.; Jin, X.; Chen, G.; Shen, Z. X.; Du, F. Polymorph engineering for boosted volumetric Na-ion and Li-ion storage. Adv. Mater. 2021, 33, 2100210.

54

Liu, Y. Y.; Li, Q.; Ma, K. X.; Yang, G. Z.; Wang, C. X. Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano 2019, 13, 12081–12089.

55

Shan, L. T.; Yang, Y. Q.; Zhang, W. Y.; Chen, H. J.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 2019, 18, 10–14.

56

Liu, L. Y.; Wu, Y. C.; Huang, L.; Liu, K. S.; Duployer, B.; Rozier, P.; Taberna, P.; Simon, P. Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv. Energy Mater. 2021, 11, 2101287.

57

Gan, Q. M.; He, H. N.; Zhao, K. M.; He, Z.; Liu, S. Q.; Yang, S. P. Plasma-Induced oxygen vacancies in urchin-like anatase titania coated by carbon for excellent sodium-ion battery anodes. ACS Appl. Mater. Interfaces 2018, 10, 7031–7042.

58

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

59

Negreira, A. S.; Aboud, S.; Wilcox, J. Surface reactivity of V2O5 (001): Effects of vacancies, protonation, hydroxylation, and chlorination. Phys. Rev. B 2011, 83, 045423.

60

He, H. N.; Sun, D.; Zhang, Q.; Fu, F.; Tang, Y. G.; Guo, J.; Shao, M. H.; Wang, H. Y. Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl. Mater. Interfaces 2017, 9, 6093–6103.

Nano Research
Pages 5123-5133
Cite this article:
Tang A, Wan C, Meng X, et al. Oxygen vacancies confined in porous Co3V2O8 sheets for durable and high-energy aqueous sodium-ion capacitors. Nano Research, 2022, 15(6): 5123-5133. https://doi.org/10.1007/s12274-022-4147-3
Topics:

866

Views

20

Crossref

19

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 12 October 2021
Revised: 17 December 2021
Accepted: 11 January 2022
Published: 15 March 2022
© Tsinghua University Press 2022
Return