AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ru/NC heterointerfaces boost energy-efficient production of green H2 over a wide pH range

Qifeng Yang1,§Botao Zhu1,§Feng Wang1,§Cunjin Zhang2Jiahao Cai1Peng Jin2( )Lai Feng1( )
Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou 215006, China
School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China

§ Qifeng Yang, Botao Zhu, and Feng Wang contributed equally to this work.

Show Author Information

Graphical Abstract

This work demonstrates that the mesoporous nanospheres with abundant Ru/NC heterointerfacesperform well as bifunctional electrocatalysts towards hydrazine oxidation reaction (HzOR) assistedelectrochemical water splitting over a wide pH range due to boosted hydrogen evolutionreaction and HzOR kinetics. As a result, a continuous H2 production can be achieved by usinga single-junction silicon solar cell as the power source.

Abstract

Green hydrogen (H2) is an import energy carrier due to the zero-carbon emission in the energy cycle. Nevertheless, green H2 production based on electrolyzer and photovoltaics (EZ/PV) remains limited due to the highly pH-dependant and energy exhausting overall water splitting. Herein, we report a series of Ru-nanocluster-modified mesoporous nanospheres (Rux@mONC) as pH-universal electrocatalysts towards both hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR). The optimal catalyst Ru20@mONC realizes remarkable catalytic activity and stability towards both HER and HzOR regardless of electrolytes. As a result, the electrode pair of Ru20@mONC//Ru20@mONC requires low cell-potentials of 39/429, 405/926, and 164/1,141 mV to achieve the current density of 10/100 mA·cm−2, as well as the long-term stability for HzOR assisted electrochemical water splitting in alkaline, acidic, and neutral media, respectively. Those performances are more promising compared to the state-of-the-art electrocatalysts so far reported. A proof-of-concept test demonstrates an efficient production of green H2 powered by a single-junction silicon solar cell, which may inspire the use of a cost-effective EZ/PV system. Furthermore, a combined spectroscopic and theoretical study verifies the formation of abundant Ru/NC heterointerfaces in Ru20@mONC, which not only contributes to the balancing of H* adsorption/desorption in HER but also facilitates the *N2H2 dehydrogenation in HzOR.

Electronic Supplementary Material

Video
12274_2022_4148_MOESM2_ESM.mp4
Download File(s)
12274_2022_4148_MOESM1_ESM.pdf (4.2 MB)

References

1

Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

2

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

3

Yang, Q. F.; Zhang, C. J.; Dong, B.; Cui, Y. C.; Wang, F.; Cai, J. H.; Jin, P.; Feng, L. Synergistic modulation of nanostructure and active sites: Ternary Ru&Fe-WOx electrocatalyst for boosting concurrent generations of hydrogen and formate over 500 mA·cm−2. Appl. Catal. B: Environ. 2021, 296, 120359.

4

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

5

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

6

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

7

Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.

8

Wang, T. Z.; Wang, Q.; Wang, Y. C.; Da, Y. L.; Zhou, W.; Shao, Y.; Li, D. H.; Zhan, S. H.; Yuan, J. Y.; Wang, H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells. Angew. Chem., Int. Ed. 2019, 58, 13466–13471.

9

Zhang, J. Y.; Wang, H. M.; Tian, Y. F.; Yan, Y.; Xue, Q.; He, T.; Liu, H. F.; Wang, C. D.; Chen, Y.; Xia, B. Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem., Int. Ed. 2018, 57, 7649–7653.

10

Zhao, Y.; Jia, N.; Wu, X. R.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. W.; Chen, Y. Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Appl. Catal. B: Environ. 2020, 270, 118880.

11

Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

12

Davis, W. E.; Li, Y. T. Analysis of hydrazine in drinking water by isotope dilution gas chromatography/tandem mass spectrometry with derivatization and liquid-liquid extraction. Anal. Chem. 2008, 80, 5449–5453.

13

Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Hübscher, R.; Lange, C.; Weber, N. Thermal neutron radiography of a passive proton exchange membrane fuel cell for portable hydrogen energy systems. J. Power Sources 2020, 480, 228668.

14

Xue, Q.; Huang, H.; Zhu, J. Y.; Zhao, Y.; Li, F. M.; Chen, P.; Chen, Y. Au@Rh core-shell nanowires for hydrazine electrooxidation. Appl. Catal. B: Environ. 2020, 278, 119269.

15

Zhang, J. H.; Liu, Y.; Li, J. M.; Jin, X.; Li, Y. P.; Qian, Q. Z.; Wang, Y. X.; El-Harairy, A.; Li, Z. Y.; Zhu, Y. et al. Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydrazine oxidation. ACS Appl. Mater. Interfaces 2021, 13, 3881–3890.

16

Qian, Q. Z.; Li, Y. P.; Liu, Y.; Guo, Y. M.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Hierarchical multi-component nanosheet array electrode with abundant NiCo/MoNi4 heterostructure interfaces enables superior bifunctionality towards hydrazine oxidation assisted energy-saving hydrogen generation. Chem. Eng. J. 2021, 414, 128818.

17

Shen, F.; Wang, Z. L.; Wang, Y. M.; Qian, G. F.; Pan, M. J.; Luo, L.; Chen, G. N.; Wei, H. L.; Yin, S. B. Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density. Nano Res. 2021, 14, 4356–4361.

18

Zhang, C. X.; Liu, H. X.; Liu, Y. F.; Liu, X. J.; Mi, Y. Y.; Guo, R. J.; Sun, J. Q.; Bao, H. H.; He, J.; Qiu, Y. et al. Rh2S3/N-Doped carbon hybrids as pH-universal bifunctional electrocatalysts for energy-saving hydrogen evolution. Small Methods 2020, 4, 2000208.

19

Yu, J.; He, Q. J.; Yang, G. M.; Zhou, W.; Shao, Z. P.; Ni, M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9, 9973–10011.

20

Yang, Q. F.; Cui, Y. C.; Li, Q. Y.; Cai, J. H.; Wang, D.; Feng, L. Nanosheet-derived ultrafine CoRuOx@NC nanoparticles with a Core@Shell structure as bifunctional electrocatalysts for electrochemical water splitting with high current density or low power input. ACS Sustainable Chem. Eng. 2020, 8, 12089–12099.

21

Yang, Q. F.; Jin, P.; Liu, B.; Zhao, L.; Cai, J. H.; Wei, Z.; Zuo, S. W.; Zhang, J.; Feng, L. Ultrafine carbon encapsulated NiRu alloys as bifunctional electrocatalysts for boosting overall water splitting: Morphological and electronic modulation through minor Ru alloying. J. Mater. Chem. A 2020, 8, 9049–9057.

22

Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

23

Feng, Q.; Wang, Q.; Zhang, Z.; Xiong, Y. Y. H.; Li, H. Y.; Yao, Y.; Yuan, X. Z.; Williams, M. C.; Gu, M.; Chen, H. et al. Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis. Appl. Catal. B: Environ. 2019, 244, 494–501.

24

Zhang, N.; Wang, C.; Chen, J. W.; Hu, C. Y.; Ma, J.; Deng, X.; Qiu, B. C.; Cai, L. J.; Xiong, Y. J.; Chai, Y. Metal substitution steering electron correlations in pyrochlore ruthenates for efficient acidic water oxidation. ACS Nano 2021, 15, 8537–8548.

25

Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

26

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

27

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

28

Wu, X. K.; Wang, Z. C.; Zhang, D.; Qin, Y. N.; Wang, M. H.; Han, Y.; Zhan, T. R.; Yang, B.; Li, S. X.; Lai, J. P. et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018.

29

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

30

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

31

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

32

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

33

Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

34

Chen, G. Z.; Wang, R. Y.; Zhao, W.; Kang, B. T.; Gao, D. W.; Li, C. C.; Lee, J. Y. Effect of Ru crystal phase on the catalytic activity of hydrolytic dehydrogenation of ammonia borane. J. Power Sources 2018, 396, 148–154.

35

Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

36

Li, T. J.; Lin, H. F.; Ouyang, X. P.; Qiu, X. Q.; Wan, Z. C. In situ preparation of Ru@N-doped carbon catalyst for the hydrogenolysis of lignin to produce aromatic monomers. ACS Catal. 2019, 9, 5828–5836.

37

Salomäki, M.; Ouvinen, T.; Marttila, L.; Kivelä, H.; Leiro, J.; Mäkilä, E.; Lukkari, J. Polydopamine nanoparticles prepared using redox-active transition metals. J. Phys. Chem. B 2019, 123, 2513–2524.

38

Zhao, R.; Liang, Z. B.; Gao, S.; Yang, C.; Zhu, B. J.; Zhao, J. L.; Qu, C.; Zou, R. Q.; Xu, Q. Puffing up energetic metal–organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew. Chem., Int. Ed. 2019, 58, 1975–1979.

39

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

40

Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

41

Fan, M. M.; Jimenez, J. D.; Shirodkar, S. N.; Wu, J. J.; Chen, S. M.; Song, L.; Royko, M. M.; Zhang, J. J.; Guo, H.; Cui, J. W. et al. Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation. ACS Catal. 2019, 9, 10077–10086.

42

Fujiwara, K.; Kitamura, M.; Shiga, D.; Niwa, Y.; Horiba, K.; Nojima, T.; Ohta, H.; Kumigashira, H.; Tsukazaki, A. Insulator-to-metal transition of Cr2O3 thin films via isovalent Ru3+ substitution. Chem. Mater. 2020, 32, 5272–5279.

43

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

44

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

45

Tian, S. B.; Wang, Z. Y.; Gong, W. B.; Chen, W. X.; Feng, Q. C.; Xu, Q.; Chen, C.; Chen, C.; Peng, Q.; Gu, L. et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J. Am. Chem. Soc. 2018, 140, 11161–11164.

46

Khaselev, O.; Turner J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425–427.

47
Pagliaro, M.; Konstandopoulos, A. G. Hydrogen and solar hydrogen. In Solar Hydrogen: Fuel of the Future. Pagliaro, M.; Konstandopoulos, A. G., Eds.; RSC Publishing: Cambridge, 2012.
48

Bhattacharyya, R.; Misra, A.; Sandeep, K. C. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: Conceptual design and analysis. Energy Convers. Manage. 2017, 133, 1–13.

Nano Research
Pages 5134-5142
Cite this article:
Yang Q, Zhu B, Wang F, et al. Ru/NC heterointerfaces boost energy-efficient production of green H2 over a wide pH range. Nano Research, 2022, 15(6): 5134-5142. https://doi.org/10.1007/s12274-022-4148-2
Topics:

940

Views

31

Crossref

30

Web of Science

31

Scopus

3

CSCD

Altmetrics

Received: 13 October 2021
Revised: 10 January 2022
Accepted: 11 January 2022
Published: 28 March 2022
© Tsinghua University Press 2022
Return