AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-fidelity transfer of area-selective atomic layer deposition grown HfO2 through DNA origami-assisted nanolithography

Xiaowan Yuan1,§Daiqin Xiao2,§Wei Yao2,§Zhihao Zhang1Lin Yang1Liyuan Zhang3Yibo Zeng2Jiaqi Liao2Shanxiong Luo2Chonghao Li2Hong Chen2,4( )Xiangmeng Qu1( )
Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
Pen-Tung Sah Institute of Micro-Nano Science and Technology, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China

§ Xiaowan Yuan, Daiqin Xiao, and Wei Yao contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, we establish a DNA origami-assisted nanolithography based on area-selective atomiclayer deposition (ALD) strategy for fabricating custom shapes hafnium oxide (HfO2) nanostructureswith high-fidelity and high-throughput. HfO2 atomic be selectively deposited on the hydroxyl-richDNA origami surface by ALD strategy due to difference in surface group of DNA origami andprotective layer substrates. Our strategy overcomes the uncontrollable growth of the nanomaterials,improving the integrity and resolution of the pattern transfer process. The strategy provides agenerality technology for nanofabrication strategy.

Abstract

DNA origami-assisted nanolithography (DOANL) for fabricating custom-designed nanomaterials through pattern transfer from DNA origami to different substrates materials are presented. However, the pattern's integrity and resolution face considerable challenges due to the uncontrollable growth of the nanomaterials during transformation and the unclear mechanism of DOANL. Herein, we report a DOANL combined with area-selective atomic layer deposition (ALD) strategy for fabricating custom shapes hafnium oxide (HfO2) with the high-fidelity and high-throughput. We find that the HfO2 selectively grows on DNA origami substrates in a hydroxyl-rich area instead of a methyl-rich protective layer. Combined with the merit of the area-selective ALD method, the HfO2 atom selectively coated on the DNA origami surface, thus, precisely modeling the shapes with high-precision in our study based on the surface groups difference of DNA origami and the naked hexamethyldisilane (HMDS)-treated substrates, which reveal the mechanical of high-fidelity pattern transfer based on DOANL. As a result, DNA origami structures can program the shape of HfO2 nanostructures. The DOANL that is based on the principle of "bottom-up" precision assembly breaks through the shape complexity and high-throughput fabrication limitation of the HfO2 nanostructures, including two- and three-dimensional structures, plane and curved structures, monolithic and hollow structures. Based on the "top-down" accurate fabrication principle, the area-selective ALD on methyl-rich protective layer substrates improves the integrity and resolution of the pattern transfer process. Overall, this work provides a general technology for nanofabrication strategy.

Electronic Supplementary Material

Download File(s)
12274_2022_4149_MOESM1_ESM.pdf (1.1 MB)

References

1

Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photon. 2011, 5, 543–548.

2

Nasiri, N.; Bo, R. H.; Hung, T. F.; Roy, V. A. L.; Fu, L.; Tricoli, A. Tunable band-selective UV-Photodetectors by 3D self-assembly of heterogeneous nanoparticle networks. Adv. Funct. Mater. 2016, 26, 7359–7366.

3

O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

4

Wang, H. B.; Kubo, T.; Nakazaki, J.; Segawa, H. Solution-processed short-wave infrared PbS colloidal quantum Dot/ZnO nanowire solar cells giving high open-circuit voltage. ACS Energy Lett. 2017, 2, 2110–2117.

5

Sinha, S. S.; Jones, S.; Pramanik, A.; Ray, P. C. Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis. Acc. Chem. Res. 2016, 49, 2725–2735.

6

Liang, J.; Hu, H.; Park, H.; Xiao, C. H.; Ding, S. J.; Paik, U.; Lou, X. W. Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 2015, 8, 1707–1711.

7

Cao, B. B.; Liu, H. R.; Yang, L. K.; Li, X.; Liu, H.; Dong, P.; Mai, X. M.; Hou, C. X.; Wang, N.; Zhang, J. X. et al. Interfacial engineering for high-efficiency nanorod array-structured perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 33770–33780.

8

Zheng, L. T.; Zhu, R.; Chen, L. L.; Fu, Q. R.; Li, J. Y.; Chen, C.; Song, J. B.; Yang, H. H. X-ray sensitive high-Z metal nanocrystals for cancer imaging and therapy. Nano Res. 2021, 14, 3744–3755.

9

Li, Y. Y.; Qi, Y. C.; Zhang, H. B.; Xia, Z. M.; Xie, T. T.; Li, W. L.; Zhong, D. N.; Zhu, H. L.; Zhou, M. Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials 2020, 226, 119538.

10

Tirosh, E.; Markovich, G. Control of defects and magnetic properties in colloidal HfO2 nanorods. Adv. Mater. 2007, 19, 2608–2612.

11

Xia, W. R.; Wu, H.; Xue, P. J.; Zhu, X. H. Microstructural, magnetic, and optical properties of Pr-doped perovskite manganite La0.67Ca0.33MnO3 nanoparticles synthesized via sol-gel process. Nanoscale Res. Lett. 2018, 13, 135.

12

Darr, J. A.; Zhang, J. Y.; Makwana, N. M.; Weng, X. L. Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions. Chem. Rev. 2017, 117, 11125–11238.

13

Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 2012, 7, 623–629.

14

Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

15

Teoh, W. Y.; Amal, R.; Mädler, L. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale 2010, 2, 1324–1347.

16

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

17

Hui, L. W.; Zhang, Q. M.; Deng, W.; Liu, H. T. DNA-based nanofabrication: Pathway to applications in surface engineering. Small 2019, 15, 1805428.

18

Van De Kerkhof, M. A.; Benschop, J. P. H.; Banine, V. Y. Lithography for now and the future. Solid-State Electron. 2019, 155, 20–26.

19

Ma, X.; Wang, Z. Q.; Chen, X. B.; Li, Y. Q.; Arce, G. R. Gradient-based source mask optimization for extreme ultraviolet lithography. IEEE Trans. Comput. Imaging 2019, 5, 120–135.

20

Donthu, S.; Pan, Z. X.; Myers, B.; Shekhawat, G.; Wu, N. Q.; Dravid, V. Facile scheme for fabricating solid-state nanostructures using E-beam lithography and solution precursors. Nano Lett. 2005, 5, 1710–1715.

21

Drost, M.; Tu, F.; Berger, L.; Preischl, C.; Zhou, W. C.; Gliemann, H.; Wöll, C.; Marbach, H. Surface-anchored metal-organic frameworks as versatile resists for gas-assisted E-beam lithography: Fabrication of sub-10 nanometer structures. ACS Nano 2018, 12, 3825–3835.

22

Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; LaBean, T. H.; Reif, J. H. Programming DNA tube circumferences. Science 2008, 321, 824–826.

23

Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

24

Qian, L. L.; Wang, Y.; Zhang, Z.; Zhao, J.; Pan, D.; Zhang, Y.; Liu, Q.; Fan, C. H.; Hu, J.; He, L. Analogic China map constructed by DNA. Chin. Sci. Bull. 2006, 51, 2973–2976.

25

Andersen, E. S.; Dong, M. D.; Nielsen, M. M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J. DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2008, 2, 1213–1218.

26

Liu, W. Y.; Zhong, H.; Wang, R. S.; Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem., Int. Ed. 2011, 50, 264–267.

27

Ke, Y. G.; Sharma, J.; Liu, M. H.; Jahn, K.; Liu, Y.; Yan, H. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 2009, 9, 2445–2447.

28

Kuzuya, A.; Komiyama, M. Design and construction of a box-shaped 3D-DNA origami. Chem. Commun. 2009, 4182–4184.

29

Qu, X. M.; Zhu, D.; Yao, G. B.; Su, S.; Chao, J.; Liu, H. J.; Zuo, X. L.; Wang, L. H.; Shi, J. Y.; Wang, L. H. et al. An exonuclease III-powered, on-particle stochastic DNA walker. Angew. Chem., Int. Ed. 2017, 56, 1855–1858.

30

Li, Z. J.; Jiang, L.; Jiang, Y. Z.; Yuan, X. W.; Aizitiaili, M.; Yue, J.; Qu, X. M. DNA-based chemical reaction networks for biosensing applications. Adv. Intell. Syst. 2020, 2, 2000086.

31

Shen, B. X.; Linko, V.; Tapio, K.; Kostiainen, M. A.; Toppari, J. J. Custom-shaped metal nanostructures based on DNA origami silhouettes. Nanoscale 2015, 7, 11267–11272.

32

Helmi, S.; Ziegler, C.; Kauert, D. J.; Seidel, R. Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett. 2014, 14, 6693–6698.

33

Sun, W.; Boulais, E.; Hakobyan, Y.; Wang, W. L.; Guan, A.; Bathe, M.; Yin, P. Casting inorganic structures with DNA molds. Science 2014, 346, 1258361.

34

Zhou, F.; Sun, W.; Ricardo, K. B.; Wang, D.; Shen, J.; Yin, P.; Liu, H. T. Programmably shaped carbon nanostructure from shape-conserving carbonization of DNA. ACS Nano 2016, 10, 3069–3077.

35

Liu, X. G.; Zhang, F.; Jing, X. X.; Pan, M. C.; Liu, P.; Li, W.; Zhu, B. W.; Li, J.; Chen, H.; Wang, L. H. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 2018, 559, 593–598.

36

Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459, 414–418.

37

Surwade, S. P.; Zhao, S. C.; Liu, H. T. Molecular lithography through DNA-mediated etching and masking of SiO2. J. Am. Chem. Soc. 2011, 133, 11868–11871.

38

Zhou, F.; Michael, B.; Surwade, S. P.; Ricardo, K. B.; Zhao, S. C.; Liu, H. T. Mechanistic study of the nanoscale negative-tone pattern transfer from DNA nanostructures to SiO2. Chem. Mater. 2015, 27, 1692–1698.

39

Diagne, C. T.; Brun, C.; Gasparutto, D.; Baillin, X.; Tiron, R. DNA origami mask for sub-ten-nanometer lithography. ACS Nano 2016, 10, 6458–6463.

40

Surwade, S. P.; Zhou, F.; Wei, B.; Sun, W.; Powell, A.; O'Donnell, C.; Yin, P.; Liu, H. T. Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates. J. Am. Chem. Soc. 2013, 135, 6778–6781.

41

Kang, S. H.; Hwang, W. S.; Lin, Z. Q.; Kwon, S. H.; Hong, S. W. A robust highly aligned DNA nanowire array-enabled lithography for graphene nanoribbon transistors. Nano Lett. 2015, 15, 7913–7920.

42

Aizitiaili, M.; Jiang, Y. Z.; Jiang, L.; Yuan, X. W.; Jin, K.; Chen, H.; Zhang, L. Y.; Qu, X. M. Programmable engineering of DNA-AuNP encoders integrated multimodal coupled analysis for precision discrimination of multiple metal ions. Nano Lett. 2021, 21, 2141–2148.

43

Tian, C.; Kim, H.; Sun, W.; Kim, Y.; Yin, P.; Liu, H. T. DNA nanostructures-mediated molecular imprinting lithography. ACS Nano 2017, 11, 227–238.

44

Schreiber, R.; Kempter, S.; Holler, S.; Schüller, V.; Schiffels, D.; Simmel, S. S.; Nickels, P. C.; Liedl, T. DNA origami-templated growth of arbitrarily shaped metal nanoparticles. Small 2011, 7, 1795–1799.

45

Nguyen, L.; Döblinger, M.; Liedl, T.; Heuer-Jungemann, A. DNA-origami-templated silica growth by sol-gel chemistry. Angew. Chem., Int. Ed. 2019, 58, 912–916.

46

Hui, L. W.; Nixon, R.; Tolman, N.; Mukai, J.; Bai, R. B.; Wang, R. S.; Liu, H. T. Area-selective atomic layer deposition of metal oxides on DNA nanostructures and its applications. ACS Nano 2020, 14, 13047–13055.

47
Biyikli, N.; Haider, A.; Deminskyi, P.; Yilmaz, M. Self-aligned nanoscale processing solutions via selective atomic layer deposition of oxide, nitride, and metallic films. In Proceedings of the SPIE 10349 Low-Dimensional Materials and Devices 2017, San Diego, 2017, pp 103490M.https://doi.org/10.1117/12.2276141
48

Cummins, C.; Weingärtner, T.; Morris, M. A. Enabling large-area selective deposition on metal-dielectric patterns using polymer brush deactivation. J. Phys. Chem. C 2018, 122, 14698–14705.

49

Mameli, A.; Kuang, Y. H.; Aghaee, M.; Ande, C. K.; Karasulu, B.; Creatore, M.; Mackus, A. J. M.; Kessels, W. M. M.; Roozeboom, F. Area-selective atomic layer deposition of In2O3: H using a μ-plasma printer for local area activation. Chem. Mater. 2017, 29, 921–925.

50

Mameli, A.; Merkx, M. J. M.; Karasulu, B.; Roozeboom, F.; Kessels, W. M. M.; Mackus, A. J. M. Area-selective atomic layer deposition of SiO2 using acetylacetone as a chemoselective inhibitor in an ABC-type cycle. ACS Nano 2017, 11, 9303–9311.

51

Chen, R.; Bent, S. F. Chemistry for positive pattern transfer using area-selective atomic layer deposition. Adv. Mater. 2006, 18, 1086–1090.

52

Joo, J.; Yu, T.; Kim, Y. W.; Park, H. M.; Wu, F. X.; Zhang, J. Z.; Hyeon, T. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 2003, 125, 6553–6557.

53

Feng, B. B.; Sosa, R. P.; Mårtensson, A. K. F.; Jiang, K.; Tong, A.; Dorfman, K. D.; Takahashi, M.; Lincoln, P.; Bustamante, C. J.; Westerlund, F. et al. Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proc. Natl. Acad. Sci. USA 2019, 116, 17169–17174.

54

Jing, B. X.; Yang, Q. B.; Zhu, Y. X.; Zhao, J. Mobility of single DNA chain under electric field during its transient contact with solid surfaces. J. Polym. Sci. Part B: Pol. Phys. 2009, 47, 2541–2546.

Nano Research
Pages 5687-5694
Cite this article:
Yuan X, Xiao D, Yao W, et al. High-fidelity transfer of area-selective atomic layer deposition grown HfO2 through DNA origami-assisted nanolithography. Nano Research, 2022, 15(6): 5687-5694. https://doi.org/10.1007/s12274-022-4149-1
Topics:

739

Views

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 28 October 2021
Revised: 10 January 2022
Accepted: 11 January 2022
Published: 28 February 2022
© Tsinghua University Press 2022
Return