AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cadmium sulfide as bifunctional mimics of NADH oxidase and cytochrome c reductase takes effect at physiological pH

Hao Wang1,2Jinxing Chen2Qing Dong1,2Xiuna Jia1,2Dan Li2( )Jin Wang3( )Erkang Wang1,2
College of Chemistry, Jilin University, Changchun 130012, China
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Department of Chemistry and Physics, State University of New York at Stony Brook Stony Brook, NY 11794-3400, USA
Show Author Information

Graphical Abstract

As for the oxidizing and reducing properties of O2•− induced from cadmium sulfide (CdS), the CdSnanozyme exhibits oxidase-like and reductase-like activities for nicotinamide adenine dinucleotide(NADH) and cytochrome c (Cytc), respectively.

Abstract

Recently, a study of mimic enzyme has received more attentions. However, the investigation on the oxidoreductase activity of electron mediators in the biological respiratory chain is still rare. Herein, we found that cadmium sulfide (CdS) nanorods can catalyze the formation of superoxide anions. Due to the role of the photo-generated holes and the nicotinamide adenine dinucleotide (NADH) oxidation promoted by superoxide anion (O2•−), the CdS exhibits NADH oxidase-like activity and can be coupled with dehydrogenase to realize the recycling of NADH. It is worth mentioning that the bio-electron acceptor, cytochrome c (Cyt c), as a chromogenic substrate, can accept electrons transferred from O2•−, which demonstrates the Cyt c reductase-like activity of CdS under physiological pH conditions. For different substrates, O2•− induced from CdS show oxidizing capacity for NADH and reducing capacity for Cyt c, which provides a new perspective for the in-depth study of new nanozyme.

Electronic Supplementary Material

Download File(s)
12274_2022_4150_MOESM1_ESM.pdf (3.3 MB)

References

1

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

2

Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. Acs Nano 2021, 15, 2005–2037.

3

Xu, Y. Q.; Fei, J. B.; Li, G. L.; Yuan, T. T.; Xu, X.; Li, J. B. Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew. Chem., Int. Ed. 2019, 58, 5572–5576.

4

Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

5

Wang, C. L.; Fei, J. B.; Wang, K. Q.; Li, J. B. A dipeptide-based hierarchical nanoarchitecture with enhanced catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 18960–18963.

6

Qi, W.; Yan, X. H.; Juan, L.; Cui, Y.; Yang, Y.; Li, J. B. Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromolecules 2009, 10, 1212–1216.

7

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

8

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

9

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

10

Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

11

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

12

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

13

Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

14

Santucci, R.; Sinibaldi, F.; Cozza, P.; Polticelli, F.; Fiorucci, L. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. Int. J. Biol. Macromol. 2019, 136, 1237–1246.

15

Qi, G. H.; Li, H. J.; Zhang, Y.; Li, C. P.; Xu, S. P.; Wang, M. M.; Jin, Y. D. Smart plasmonic nanorobot for real-time monitoring cytochrome c release and cell acidification in apoptosis during electrostimulation. Anal. Chem. 2019, 91, 1408–1415.

16

Elmer-Dixon, M. M.; Xie, Z. Q.; Alverson, J. B.; Priestley, N. D.; Bowler, B. E. Curvature-dependent binding of cytochrome c to cardiolipin. J. Am. Chem. Soc. 2020, 142, 19532–19539.

17

Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020, 21, 204–224.

18

Rogers, C.; Erkes, D. A.; Nardone, A.; Aplin, A. E.; Fernandes-Alnemri, T.; Alnemri, E. S. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 2019, 10, 1689.

19

McComb, S.; Chan, P. K.; Guinot, A.; Hartmannsdottir, H.; Jenni, S.; Dobay, M. P.; Bourquin, J. P.; Bornhauser, B. C. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Sci. Adv. 2019, 5, eaau9433.

20

Burke, P. J. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 2017, 3, 857–870.

21

Bock, F. J.; Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2020, 21, 85–100.

22

Chen, J. F.; Chen, C. L.; Alevriadou, B. R.; Zweier, J. L.; Chen, Y. R. Excess no predisposes mitochondrial succinate-cytochrome c reductase to produce hydroxyl radical. Biochim. Biophys. Acta (BBA)- Bioenerg. 2011, 1807, 491–502.

23

Titov, D. V.; Cracan, V.; Goodman, R. P.; Peng, J.; Grabarek, Z.; Mootha, V. K. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 2016, 352, 231–235.

24

Navas, L. E.; Carnero, A. NAD+ metabolism, stemness, the immune response, and cancer. Sig. Transduct. Target. Ther. 2021, 6, 2.

25

Ying, W. H. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Sign. 2008, 10, 179–206.

26

Cantó, C.; Menzies, K. J.; Auwerx, J. NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metab. 2015, 22, 31–53.

27

Singh, N.; Mugesh, G. CeVO4 nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species. Angew. Chem., Int. Ed. 2019, 58, 7797–7801.

28

Chen, J. X.; Ma, Q.; Li, M. H.; Wu, W. W.; Huang, L.; Liu, L.; Fang, Y. X.; Dong, S. J. Coenzyme-dependent nanozymes playing dual roles in oxidase and reductase mimics with enhanced electron transport. Nanoscale 2020, 12, 23578–23585.

29

Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

30

Liu, Q. Y.; Jia, Q. Y.; Zhu, R. R.; Shao, Q.; Wang, D. M.; Cui, P.; Ge, J. C. 5, 10, 15, 20-Tetrakis(4-carboxyl phenyl)porphyrin-CdS nanocomposites with intrinsic peroxidase-like activity for glucose colorimetric detection. Mat. Sci. Eng. C 2014, 42, 177–184.

31

Zhang, S. H.; Shi, J. F.; Chen, Y. X.; Huo, Q.; Li, W. R.; Wu, Y. Z.; Sun, Y. Y.; Zhang, Y. S.; Wang, X. D.; Jiang, Z. Y. Unraveling and manipulating of NADH oxidation by photogenerated holes. ACS Catal. 2020, 10, 4967–4972.

32

Wu, X.; Zhang, H. B.; Dong, J. C.; Qiu, M.; Kong, J. T.; Zhang, Y. F.; Li, Y.; Xu, G. L.; Zhang, J.; Ye, J. H. Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109–117.

33

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

34

Chen, M.; Wang, Z. H.; Shu, J. X.; Jiang, X. H.; Wang, W.; Shi, Z. H.; Lin, Y. W. Mimicking a natural enzyme system: Cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c. Inorg. Chem. 2017, 56, 9400–9403.

35

Peskin, A. V.; Winterbourn, C. C. Assay of superoxide dismutase activity in a plate assay using WST-1. Free Radic. Biol. Med. 2017, 103, 188–191.

36

Naya, S. I.; Kume, T.; Akashi, R.; Fujishima, M.; Tada, H. Red-light-driven water splitting by Au(core)−CdS(shell) half-cut nanoegg with heteroepitaxial junction. J. Am. Chem. Soc. 2018, 140, 1251–1254.

37

Vinokurov, V. A.; Stavitskaya, A. V.; Ivanov, E. V.; Gushchin, P. A.; Kozlov, D. V.; Kurenkova, A. Y.; Kolinko, P. A.; Kozlova, E. A.; Lvov, Y. M. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation. ACS Sustainable Chem. Eng. 2017, 5, 11316–11323.

38

Wallen, J. R.; Mallett, T. C.; Okuno, T.; Parsonage, D.; Sakai, H.; Tsukihara, T.; Claiborne, A. Structural analysis of Streptococcus pyogenes NADH oxidase: Conformational dynamics involved in formation of the C(4a)-peroxyflavin intermediate. Biochemistry 2015, 54, 6815–6829.

39

Song, H. Y.; Ma, C. L.; Wang, L.; Zhu, Z. G. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: Characterization and applications. Nanoscale 2020, 12, 19284–19292.

40

Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Lanthanide-boosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. ACS Nano 2019, 13, 14152–14161.

41

Liu, Y. F.; Zhou, M.; Cao, W.; Wang, X. Y.; Wang, Q.; Li, S. R.; Wei, H. Light-responsive metal–organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 2019, 91, 8170–8175.

42

Yu, B.; Wang, W.; Sun, W. B.; Jiang, C. H.; Lu, L. H. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 2021, 143, 8855–8865.

43

Ishibashi, T.; Imai, Y. Effect of lipid depletion on the kinetics of microsomal NADH-cytochrome c reductase. Tohoku J. Exp. Med. 1976, 118, 365–371.

44

Velayutham, M.; Hemann, C.; Zweier, J. L. Removal of H2O2 and generation of superoxide radical: Role of cytochrome c and NADH. Free Radic. Biol. Med. 2011, 51, 160–170.

45

Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13.

46

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

Nano Research
Pages 5256-5261
Cite this article:
Wang H, Chen J, Dong Q, et al. Cadmium sulfide as bifunctional mimics of NADH oxidase and cytochrome c reductase takes effect at physiological pH. Nano Research, 2022, 15(6): 5256-5261. https://doi.org/10.1007/s12274-022-4150-8
Topics:

965

Views

20

Crossref

19

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 12 November 2021
Revised: 11 January 2022
Accepted: 11 January 2022
Published: 15 March 2022
© Tsinghua University Press 2022
Return