AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual strategy of modulating growth temperature and inserting ultrathin barrier to enhance the wave function overlap in type-II superlattices

Yuyang Wu1Yahui Zhang1Yi Zhang2Yunhao Zhao1Yu Zhang2Yingqiang Xu2Chongyun Liang1Zhichuan Niu2Yi Shi3Renchao Che1,4( )
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, China
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative, Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Joint-Research Center for Computational Materials, Zhejiang Laboratory, Hangzhou 311100, China
Show Author Information

Graphical Abstract

The electron–hole wave function overlap (WFO) in InAs/AlSb type-Ⅱ superlattices has been enhancedin two different ways. First, adjusting the growth temperature to 470 ℃ induces the atom exchange atthe AlSb-on-InAs interface, which improves the WFO at the InAs-on-AlSb interface. Then byinserting ultrathin AlAs layers into AlSb layers, the hole wave functions in AlSb layers are squeezedto the sides, further enhancing the WFO.

Abstract

Maximizing wave function overlap (WFO) within type-II superlattices (T2SL) is demonstrated to be important for improving their photoelectric properties, such as optical transition strength and quantum efficiency, which, however, remains a great challenge for now. Herein, the dual strategy of modulating growth temperature and inserting ultrathin AlAs barrier into the AlSb layers is presented to enhance the WFO in InAs/AlSb T2SL. The charge distributions and strain states indicate that moderate growth temperature of 470 °C promotes the As–Sb exchange at AlSb-on-InAs (AOI) interfaces, which would introduce skew of energy band structure towards InAs-on-AlSb (IOA) interface. Such band structure could drive electrons and holes to the IOA interfaces simultaneously, thus resulting in the enhanced WFO. On this basis, insertion of relatively thick (0.3 nm) AlAs layers is found to squeeze more holes towards adjacent interfaces, boosting the WFO further. The InAs/AlSb superlattices with optimized WFO reveal better optical performance, where the peak intensity shows 50% improvement in the PL spectra than the original one. Moreover, a dual-miniband radiative transition mechanism appears in the InAs/AlSb superlattice with relatively thick AlAs intercalation, which helps broaden the wavelength range of the superlattice.

Electronic Supplementary Material

Download File(s)
12274_2022_4151_MOESM1_ESM.pdf (1,001.2 KB)

References

1

Sai-Halasz, G. A.; Tsu, R.; Esaki, L. A new semiconductor superlattice. Appl. Phys. Lett. 1977, 30, 651–653.

2

Dehzangi, A.; Li, J.; Razeghi, M. Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light:Sci. Appl. 2021, 10, 17.

3

Dehzangi, A.; McClintock, R.; Haddadi, A.; Wu, D. H.; Chevallier, R.; Razeghi, M. Type-II superlattices base visible/extended short-wavelength infrared photodetectors with a bandstructure-engineered photo-generated carrier extractor. Sci. Rep. 2019, 9, 5003.

4

Haddadi, A.; Adhikary, S.; Dehzangi, A.; Razeghi, M. Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices. Appl. Phys. Lett. 2016, 109, 021107.

5

Dehzangi, A.; McClintock, R.; Wu, D. H.; Haddadi, A.; Chevallier, R.; Razeghi, M. Extended short wavelength infrared heterojunction phototransistors based on type II superlattices. Appl. Phys. Lett. 2019, 114, 191109.

6

Flatté, M. E.; Grein, C. H.; Hasenberg, T. C.; Anson, S. A.; Jang, D. J.; Olesberg, J. T.; Boggess, T. F. Carrier recombination rates in narrow-gap InAs/Ga1−xInxSb based superlattices. Phys. Rev. B 1999, 59, 5745–5750.

7

Meyer, J. R.; Felix, C. L.; Bewley, W. W.; Vurgaftman, I.; Aifer, E. H.; Olafsen, L. J.; Lindle, J. R.; Hoffman, C. A.; Yang, M. J.; Bennett, B. R. et al. Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells. Appl. Phys. Lett. 1998, 73, 2857–2859.

8

Zegrya, G. G.; Andreev, A. D. Mechanism of suppression of auger recombination processes in type-II heterostructures. Appl. Phys. Lett. 1995, 67, 2681–2683.

9

Hoang, A. M.; Dehzangi, A.; Adhikary, S.; Razeghi, M. High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Sci. Rep. 2016, 6, 24144.

10

Prins, A. D.; Lewis, M. K.; Bushell, Z. L.; Sweeney, S. J.; Liu, S.; Zhang, Y. H. Evidence for a defect level above the conduction band edge of InAs/InAsSb type-II superlattices for applications in efficient infrared photodetectors. Appl. Phys. Lett. 2015, 106, 171111.

11

Nguyen, B. M.; Hoffman, D.; Delaunay, P. Y.; Razeghi, M. Dark current suppression in type-II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier. Appl. Phys. Lett. 2007, 91, 163511.

12

Kroemer, H. The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: A selective review. Phys. E:Low-dimens. Syst. Nanostruct. 2004, 20, 196–203.

13

Chang, Y. C.; Schulman, J. N. Interband optical transitions in GaAs-Ga1−xAlxAs and InAs-GaSb superlattices. Phys. Rev. B 1985, 31, 2069–2079.

14

Cohen-Elias, D.; Uliel, Y.; Klin, O.; Snapi, N.; Weiss, E.; Shafir, I.; Westreich, O.; Katz, M. Short wavelength infrared InAs/InSb/AlSb type-II superlattice photodetector. Infrared Phys. Technol. 2017, 84, 82–86.

15

Smith, D. L.; Mailhiot, C. Proposal for strained type II superlattice infrared detectors. J. Appl. Phys. 1987, 62, 2545–2548.

16

Feldmann, J.; Sattmann, R.; Göbel, E. O.; Kuhl, J.; Hebling, J.; Ploog, K.; Muralidharan, R.; Dawson, P.; Foxon, C. T. Subpicosecond real-space charge transfer in type-II GaAs/AlAs superlattices. Phys. Rev. Lett. 1989, 62, 1892–1895.

17

Bi, H.; Han, X.; Liu, L.; Zhao, Y. H.; Zhao, X. B.; Wang, G. W.; Xu, Y. Q.; Niu, Z. C.; Shi, Y.; Che, R. C. Atomic mechanism of interfacial-controlled quantum efficiency and charge migration in InAs/GaSb superlattice. ACS Appl. Mater. Interfaces 2017, 9, 26642–26647.

18

Zhao, Y. H.; Liu, L.; Bi, H.; Han, X.; Zhao, X. B.; Ni, H. Q.; Xu, Y. Q.; Niu, Z. C.; Che, R. C. Quantum efficiency optimization by maximizing wave function overlap in type-II superlattice photodetectors. Nanoscale 2017, 9, 11833–11840.

19

Cai, C. Y.; Zhao, Y. H.; Chang, F. R.; Zhao, X. B.; Yang, L. T.; Liang, C. Y.; Wang, G. W.; Niu, Z. C.; Shi, Y.; Liu, X. H. et al. Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap. Nano Res. 2020, 13, 1536–1543.

20

Meyer, J. R.; Hoffman, C. A.; Bartoli, F. J.; Ram-Mohan, L. R. Type-II quantum-well lasers for the mid-wavelength infrared. Appl. Phys. Lett. 1995, 67, 757–759.

21

Aifer, E. H.; Tischler, J. G.; Warner, J. H.; Vurgaftman, I.; Bewley, W. W.; Meyer, J. R.; Kim, J. C.; Whitman, L. J.; Canedy, C. L.; Jackson, E. M. W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency. Appl. Phys. Lett. 2006, 89, 053519.

22

Chen, X. R.; Zhou, Y.; Zhu, L.; Qi, Z.; Xu, Q. Q.; Xu, Z. C.; Guo, S. L.; Chen, J. X.; He, L.; Shao, J. Evolution of interfacial properties with annealing in InAs/GaSb superlattice probed by infrared photoluminescence. Jpn. J. Appl. Phys. 2014, 53, 082201.

23

Park, J.; Lee, J.; Park, S. Photoluminescence dependence of InGaN/GaN QW on embedded AlGaN δ-layer. Opt. Express 2007, 15, 6096–6101.

24

Wu, Y. Y.; Zhang, Y.; Zhao, Y. H.; Cai, C. Y.; Zhang, Y. H.; Zhang, Y.; Liang, C. Y.; Xu, Y. Q.; Niu, Z. C.; Shi, Y. et al. Insights into growth-oriented interfacial modulation within semiconductor multilayers. ACS Appl. Mater. Interfaces 2021, 13, 27262–27269.

25

Zhao, Y. H.; Cai, C. Y.; Zhang, Y.; Zhao, X. B.; Xu, Y. Q.; Liang, C. Y.; Niu, Z. C.; Shi, Y.; Che, R. C. Control of electron tunnelling by fine band engineering of semiconductor potential barriers. Nanoscale 2019, 11, 21376–21385.

26

Wei, Y. J.; Razeghi, M. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering. Phys. Rev. B 2004, 69, 085316.

27

Nicolaï, J.; Warot-Fonrose, B.; Gatel, C.; Teissier, R.; Baranov, A. N.; Magen, C.; Ponchet, A. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers. J. Appl. Phys. 2015, 118, 035305.

28

Wang, Y. Q.; Wang, Z. L.; Brown, T.; Brown, A.; May, G. Thermodynamic analysis of anion exchange during heteroepitaxy. J. Cryst. Growth 2002, 242, 5–14.

29

Zhao, Y. H.; Zhang, J. C.; Cai, C. Y.; Chen, J.; Zhao, X. B.; Liang, C. Y.; Liu, F. Q.; Shi, Y.; Liu, X. H.; Che, R. C. Domino effect of thickness fluctuation on subband structure and electron transport within semiconductor cascade structures. ACS Appl. Mater. Interfaces 2020, 12, 41950–41959.

30

Moon, R. L.; Antypas, G. A.; James, L. W. Bandgap and lattice constant of GaInAsP as a function of alloy composition. J. Electron. Mater. 1974, 3, 635–644.

31

Glisson, T. H.; Hauser, J. R.; Littlejohn, M. A.; Williams, C. K. Energy bandgap and lattice constant contours of III-V quaternary alloys. J. Electron. Mater. 1978, 7, 1–16.

32

Cai, C. Y.; Zhao, Y. H.; Xie, S. W.; Zhao, X. B.; Zhang, Y.; Xu, Y. Q.; Liang, C. Y.; Niu, Z. C.; Shi, Y.; Li, Y. S. et al. Heterointerface-driven band alignment engineering and its impact on macro-performance in semiconductor multilayer nanostructures. Small 2019, 15, 1900837.

33

Vurgaftman, I.; Meyer, J. R.; Ram-Mohan, L. R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875.

Nano Research
Pages 5626-5632
Cite this article:
Wu Y, Zhang Y, Zhang Y, et al. Dual strategy of modulating growth temperature and inserting ultrathin barrier to enhance the wave function overlap in type-II superlattices. Nano Research, 2022, 15(6): 5626-5632. https://doi.org/10.1007/s12274-022-4151-7
Topics:

853

Views

4

Crossref

5

Web of Science

4

Scopus

1

CSCD

Altmetrics

Received: 02 December 2021
Revised: 04 January 2022
Accepted: 11 January 2022
Published: 19 March 2022
© Tsinghua University Press 2022
Return