Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the rapid economic growth and the deepening awareness of sustainable development, the demand for green and efficient energy storage equipment increases. As a promising energy storage and conversion device, zinc-air batteries (ZABs) have the advantages of high theoretical specific energy density, low cost, and environmental friendliness. Nevertheless, the efficiency of ZABs is closely related to the electrocatalytic capacity of the air electrode due to its sluggish kinetics for oxygen reduction and evolution reaction (ORR/OER). Therefore, it is necessary to develop efficient catalysts to promote the reaction rate. Recently, cobalt-based materials have become a research hotspot for oxygen electrocatalysts owing to their rich natural content, high catalytic activity, and stability. In this review, the mechanisms of the OER/ORR reaction process, the catalyst's performance characterization, and the various combination methods with the current collector are systematically introduced and analyzed. Further, a broad overview of cobalt-based materials used as electrocatalysts for ZABs is presented, including cobalt-based perovskite, cobalt-nitrogen-carbon (Co-N-C) materials, cobalt oxides, cobalt-containing composite oxides, and cobalt sulfides/phosphides. Finally, various strategies for developing efficient electrocatalysts for ZABs are summarized, highlighting the challenges and future perspectives in designing novel catalysts.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Chen, D. F.; Pan, L.; Pei, P. C.; Huang, S. W.; Ren, P.; Song, X. Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy 2021, 224, 120142.
Duan, X. D.; Pan, N.; Sun, C.; Zhang, K. X.; Zhu, X. K.; Zhang, M. D.; Song, L.; Zheng, H. G. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting. J. Energy Chem. 2021, 56, 290–298.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
Lu, Z. J.; Yao, S. D.; Dong, Y. Z.; Wu, D. L.; Pan, H. R.; Huang, X. N.; Wang, T.; Sun, Z. Y.; Chen, X. X. Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Energy Chem. 2021, 56, 87–97.
Yuan, Y. F.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 2017, 8, 15806.
Zhao, J. B.; Zhang, Y. Y.; Wang, Y. H.; Li, H.; Peng, Y. Y. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J. Energy Chem. 2018, 27, 1536–1554.
Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.
Pei, P. C.; Chen, H. C. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: A review. Appl. Energy 2014, 125, 60–75.
Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.
Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336.
Pan, L.; Chen, D. F.; Pei, P. C.; Huang, S. W.; Ren, P.; Song, X. A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Appl. Energy 2021, 290, 116777.
Chen, D. W.; Cao, W.; Liu, J.; Wang, J.; Li, X. K.; Jiang, L. H. Filling the in situ-generated vacancies with metal cations captured by C–N bonds of defect-rich 3D carbon nanosheet for bifunctional oxygen electrocatalysis. J. Energy Chem. 2021, 59, 47–54.
Ni, S. Y.; Tan, S. S.; An, Q. Y.; Mai, L. Q. Three dimensional porous frameworks for lithium dendrite suppression. J. Energy Chem. 2020, 44, 73–89.
Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy. Adv. Sci. 2017, 4, 1600168.
Pei, P. C.; Chen, D. F.; Wu, Z. Y.; Ren, P. Nonlinear methods for evaluating and online predicting the lifetime of fuel cells. Appl. Energy 2019, 254, 113730.
Ren, P.; Pei, P. C.; Li, Y. H.; Wu, Z. Y.; Chen, D. F.; Huang, S. W. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci. 2020, 80, 100859.
Ren, P.; Pei, P. C.; Chen, D. F.; Li, Y. H.; Wu, Z. Y.; Zhang, L.; Li, Z. Z.; Wang, M. K.; Wang, H.; Wang, B. Z. et al. Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation. Appl. Energy 2022, 306, 118068.
Wang, Y.; Yang, Y.; Jia, S. F.; Wang, X. M.; Lyu, K.; Peng, Y. Q.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L. et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 2019, 10, 1506.
Wu, H.; Peng, T.; Kou, Z. K.; Cheng, K.; Zhang, J.; Zhang, J.; Meng, T.; Mu, S. C. In situ constructing of ultrastable ceramic@graphene core–shell architectures as advanced metal catalyst supports toward oxygen reduction. J. Energy Chem. 2017, 26, 1160–1167.
Benzigar, M. R.; Dasireddy, V. D. B. C.; Guan, X. W.; Wu, T.; Liu, G. Z. Advances on emerging materials for flexible supercapacitors: Current trends and beyond. Adv. Funct. Mater. 2020, 30, 2002993.
Shi, X. Y.; Zheng, S. H.; Wu, Z. S.; Bao, X. H. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 2018, 27, 25–42.
Li, Y.; Xu, K. D.; Zhang, Q.; Zheng, Z.; Li, S. N.; Zhao, Q. H.; Li, C.; Dong, C.; Mei, Z. W,; Pan, F. et al. One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery. J. Energy Chem. 2022, 66, 100–106.
Sheng, J.; Zhu, S.; Jia, G. D.; Liu, X.; Li, Y. Carbon nanotube supported bifunctional electrocatalysts containing iron–nitrogen–carbon active sites for zinc-air batteries. Nano Res. 2021, 14, 4541–4547.
Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygenreduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.
Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 2019, 31, 1803800.
Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558–6625.
Wang, J. J.; Li, Y. L.; Sun, X. L. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2013, 2, 443–467.
Mori, R. All solid state rechargeable aluminum-air battery with deep eutectic solvent based electrolyte and suppression of byproducts formation. RSC Adv. 2019, 9, 22220–22226.
Xu, Y. F.; Zhao, Y.; Ren, J.; Zhang, Y.; Peng, H. S. An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem., Int. Ed. 2016, 55, 7979–7982.
Li, C. S.; Sun, Y.; Lai, W. H.; Wang, J. Z.; Chou, S. L. Ultrafine Mn3O4 nanowires/three-dimensional graphene/single-walled carbon nanotube composites: Superior electrocatalysts for oxygen reduction and enhanced Mg/air batteries. ACS Appl. Mater. Interfaces 2016, 8, 27710–27719.
Li, L. H.; Chen, H.; He, E.; Wang, L.; Ye, T. T.; Lu, J.; Jiao, Y. D.; Wang, J. C.; Gao, R.; Peng, H. S. et al. High-energy-density magnesium-air battery based on dual-layer gel electrolyte. Angew. Chem., Int. Ed. 2021, 60, 15317–15322.
Jiao, J. Q.; Pan, Y.; Wang, B.; Yang, W. J.; Liu, S. J.; Zhang, C. Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core–shell electrocatalysts for rechargeable zinc-air batteries. J. Energy Chem. 2021, 53, 364–371.
Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.
Chen, X. C.; Zhou, Z.; Karahan, H. E.; Shao, Q.; Wei, L.; Chen, Y. Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 2018, 14, 1801929.
Wu, H. H.; Jiang, X. L.; Ye, Y. F.; Yan, C. C.; Xie, S. H.; Miao, S.; Wang, G. X.; Bao, X. H. Nitrogen-doped carbon nanotube encapsulating cobalt nanoparticles towards efficient oxygen reduction for zinc-air battery. J. Energy Chem. 2017, 26, 1181–1186.
Su, L. S.; Zhang, J. B.; Wang, C. J.; Zhang, Y. K.; Li, Z.; Song, Y.; Jin, T.; Ma, Z. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments. Appl. Energy 2016, 163, 201–210.
Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.
Wang, K. L.; Pei, P. C.; Wang, Y. C.; Liao, C.; Wang, W.; Huang, S. W. Advanced rechargeable zinc-air battery with parameter optimization. Appl. Energy 2018, 225, 848–856.
Wang, K. L.; Pei, P. C.; Wang, Y. C. Magnetic field improving interfacial behavior of the two-electrode system. J. Electrochem. Soc. 2017, 164, A3440–A3444.
Wang, S. G.; Wang, J.; Wang, X.; Li, L.; Qin, J. W.; Cao, M. H. Carbon hybrid with 3D nano-forest architecture in-situ catalytically constructed by CoFe alloy as advanced multifunctional electrocatalysts for Zn-air batteries-driven water splitting. J. Energy Chem. 2021, 53, 422–432.
Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual–metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.
Luo, X. H.; Zhou, Q. L.; Du, S.; Li, J.; Zhong, J. W.; Deng, X. L.; Liu, Y. L. Porous Co9S8/nitrogen, sulfur-doped carbon@Mo2C dual catalyst for efficient water splitting. ACS Appl. Mater. Interfaces 2018, 10, 22291–22302.
Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.
Ma, Z.; Pei, P. C.; Wang, K. L.; Wang, X. Z.; Xu, H. C.; Liu, Y. F.; Peng, G. L. Degradation characteristics of air cathode in zinc air fuel cells. J. Power Sources 2015, 274, 56–64.
Pei, P. C.; Ma, Z.; Wang, K. L.; Wang, X. Z.; Song, M. C.; Xu, H. C. High performance zinc air fuel cell stack. J. Power Sources 2014, 249, 13–20.
Huang, H.; Kong, L. J.; Liu, M.; He, J.; Shuang, W.; Xu, Y. H.; Bu, X. H. Constructing bifunctional Co/MoC@N-C catalyst via an in-situ encapsulation strategy for efficient oxygen electrocatalysis. J. Energy Chem. 2021, 59, 538–546.
Shi, X. D.; Pu, Z. H.; Chi, B.; Liu, M. R.; Yu, S. Y.; Zheng, L.; Yang, L. J.; Shu, T.; Liao, S. J. Nitrogen and atomic Fe dual-doped porous carbon nanocubes as superior electrocatalysts for acidic H2-O2 PEMFC and alkaline Zn-air battery. J. Energy Chem. 2021, 59, 388–395.
Ye, Y. F.; Cai, F.; Yan, C. C.; Li, Y. S.; Wang, G. X.; Bao, X. H. Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. J. Energy Chem. 2017, 26, 1174–1180.
Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn-air batteries. Nano Res. 2017, 10, 4436–4447.
Han, Z.; Lin, S. Y.; Feng, J. J.; Zhang, L.; Zhang, Q. L.; Wang, A. J. Transitional metal alloyed nanoparticles entrapped into the highly porous N-doped 3D honeycombed carbon: A high-efficiency bifunctional oxygen electrocatalyst for boosting rechargeable Zn-air batteries. Int. J. Hydrogen Energy 2021, 46, 19385–19396.
Dong, F.; Wu, M.;Chen, Z.; Liu, X.;Zhang, G.; Qiao, J.; Sun, S. Atomically Dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nanomicro Lett. 2021, 14, 36.
Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–13844.
Liu, X. Z.; Tang, T.; Jiang, W. J.; Zhang, Q. H.; Gu, L.; Hu, J. S. Fe-doped Co3O4 polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc-air batteries. Chem. Commun. 2020, 56, 5374–5377.
Pan, H. R.; Huang, X. N.; Lu, Z. J.; Zhang, Z. Q.; An, B. G.; Wu, D. L.; Wang, T.; Chen, X. X.; Cheng, F. Y. Dual oxidation and sulfurization enabling hybrid Co/Co3O4@CoS in S/N-doped carbon matrix for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Chem. Eng. J. 2021, 419, 129619.
Yan, L.; Wang, H. Y.; Shen, J. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 2021, 403, 126385.
Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3d superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.
Wu, M. J.; Zhang, G. X.; Chen, N.; Hu, Y. F.; Regier, T.; Rawach, D.; Sun, S. H. Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 2021, 6, 1153–1161.
Liu, S. S.; Ji, H. Q.; Wang, M. F.; Sun, H.; Liu, J.; Yan, C. L.; Qian, T. Atomic metal vacancy modulation of single-atom dispersed Co/N/C for highly efficient and stable air cathode. ACS Appl. Mater. Interfaces 2020, 12, 15298–15304.
Wei, L. C.; Qiu, L. J.; Liu, Y. Y.; Zhang, J. M.; Yuan, D. S.; Wang, L. Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries. ACS Sustain. Chem. Eng. 2019, 7, 14180–14188.
Pei, P. C.; Wang, K. L.; Ma, Z. Technologies for extending zinc-air battery’s cyclelife: A review. Appl. Energy 2014, 128, 315–324.
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.
Wang, Y. J.; Long, W. Y.; Wang, L. L.; Yuan, R. S.; Ignaszak, A.; Fang, B. Z.; Wilkinson, D. P. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258–275.
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.
Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.
Lima, F. H. B.; Calegaro, M. L.; Ticianelli, E. A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochim. Acta 2007, 52, 3732–3738.
Mao, L. Q.; Zhang, D.; Sotomura, T.; Nakatsu, K.; Koshiba, N.; Ohsaka, T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim. Acta 2003, 48, 1015–1021.
Ibraheem, S.; Li, X. T.; Shah, S. S. A.; Najam, T.; Yasin, G.; Iqbal, R.; Hussain, S.; Ding, W. Y.; Shahzad, F. Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 10972–10978.
Ge, X. M.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. L. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts. ACS Catal. 2015, 5, 4643–4667.
Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.
Nørskov, J. K.; Stoltze, P. Theoretical aspects of surface reactions. Surf. Sci. 1987, 189–190, 91–105.
Norsko, J. K. Chemisorption on metal surfaces. Rep. Prog. Phys. 1990, 53, 1253–1295.
Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.
Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A:Chem. 1997, 115, 421–429.
Xin, H. L.; Vojvodic, A.; Voss, J.; Nørskov, J. K.; Abild-Pedersen, F. Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys. Rev. B 2014, 89, 115114.
Wu, D. Y.; Dong, C. K.; Zhan, H. B.; Du, X. W. Bond-energy-integrated descriptor for oxygen electrocatalysis of transition metal oxides. J. Phys. Chem. Lett. 2018, 9, 3387–3391.
Meadowcroft, D. B. Low-cost oxygen electrode material. Nature 1970, 226, 847–848.
Lopez, K.; Park, G.; Sun, H. J.; An, J. C.; Eom, S.; Shim, J. Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1−xO3 (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution. J. Appl. Electrochem. 2015, 45, 313–323.
Jung, J. I.; Risch, M.; Park, S.; Kim, M. G.; Nam, G.; Jeong, H. Y.; Shao-Horn, Y.; Cho, J. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energ. Environ. Sci. 2016, 9, 176–183.
Bu, Y. F.; Gwon, O.; Nam, G.; Jang, H.; Kim, S.; Zhong, Q.; Cho, J.; Kim, G. A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 2017, 11, 11594–11601.
Wang, Q.; Xue, Y. J.; Sun, S. S.; Li, S. H.; Miao, H.; Liu, Z. P. La0.8Sr0.2Co1−xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. Electrochim. Acta 2017, 254, 14–24.
Li, P. Z.; Wei, B.; Lü, Z.; Wu, Y. Y.; Zhang, Y. H.; Huang, X. Q. La1.7Sr0.3Co0.5Ni0.5O4+δ layered perovskite as an efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Appl. Surf. Sci. 2019, 464, 494–501.
Yuan, R. H.; He, Y.; He, W.; Ni, M.; Leung, M. K. H. Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the a–site deficiency for oxygen reduction and evolution reactions in alkaline media. Appl. Energy 2019, 251, 113406.
Gui, L. Q.; Wang, Z. B.; Zhang, K.; He, B. B.; Liu, Y. Z.; Zhou, W.; Xu, J. M.; Wang, Q.; Zhao, L. Oxygen vacancies-rich Ce0.9Gd0.1O2−δ decorated Pr0.5Ba0.5CoO3−δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Appl. Catal. B 2020, 266, 118656.
Bian, J. J.; Su, R.; Yao, Y.; Wang, J.; Zhou, J. G.; Li, F.; Wang, Z. L.; Sun, C. W. Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc-air batteries. ACS Appl. Energy Mater. 2019, 2, 923–931.
Nie, R. G.; Deng, Y. Q.; Yang, H.; Tan, Y.; Yuan, H. B.; Sagar, R. U. R.; Liang, T. X. Efficient oxygen evolution reaction in SrCo0.8Fe0.2O3−δ perovskite and surface reconstruction for practical zinc-air batteries. Appl. Surf. Sci. 2021, 552, 149509.
Zipprich, W.; Waschilewski, S.; Rocholl, F.; Wiemhöfer, H. D. Improved preparation of La1−xMexCoO3−δ (Me = Sr, Ca) and analysis of oxide ion conductivity with ion conducting microcontacts. Solid State Ion. 1997, 101–103, 1015–1023.
Ishihara, T.; Guo, L. M.; Miyano, T.; Inoishi, Y.; Kaneko, K.; Ida, S. Mesoporous La0.6Ca0.4CoO3 perovskites with large surface areas as stable air electrodes for rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 7686–7692.
Geiser, U.; Beno, M. A.; Schultz, A. J.; Wang, H. H.; Allen, T. J.; Monaghan, M. R.; Williams, J. M. Structural instability in single crystals of the high-Tc superconductor La2−xSrx CuO4. Phys. Rev. B 1987, 35, 6721–6724.
Luo, G. P.; Wang, Y. S.; Chen, S. Y.; Heilman, A. K.; Chen, C. L.; Chu, C. W.; Liou, Y.; Ming, N. B. Electrical and magnetic properties of La0.5Sr0.5CoO3 thin films. Appl. Phys. Lett. 2000, 76, 1908–1910.
Wu, N. L.; Liu, W. R.; Su, S. J. Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3−x in bifunctional air electrode. Electrochim. Acta 2003, 48, 1567–1571.
Wang, X. Y.; Sebastian, P. J.; Smit, M. A.; Yang, H. P.; Gamboa, S. A. Studies on the oxygen reduction catalyst for zinc-air battery electrode. J. Power Sources 2003, 124, 278–284.
Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.
Weidenkaff, A.; Ebbinghaus, S. G.; Lippert, T. Ln1−xAxCoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn/air batteries. Chem. Mater. 2002, 14, 1797–1805.
Vignesh, A.; Prabu, M.; Shanmugam, S. Porous LaCo1−xNixO3−δ nanostructures as an efficient electrocatalyst for water oxidation and for a zinc-air battery. ACS Appl. Mater. Interfaces 2016, 8, 6019–6031.
Hu, J.; Wang, L. N.; Shi, L. N.; Huang, H. Oxygen reduction reaction activity of LaMn1−xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim. Acta 2015, 161, 115–123.
Lee, D. U.; Park, M. G.; Park, H. W.; Seo, M. H.; Ismayilov, V.; Ahmed, R.; Chen, Z. W. Highly active Co-doped LaMnO3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc-air batteries. Electrochem. Commun. 2015, 60, 38–41.
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.
Grimaud, A.; Carlton, C. E.; Risch, M.; Hong, W. T.; May, K. J.; Shao-Horn, Y. Oxygen evolution activity and stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The influence of transition metal coordination. J. Phys. Chem. C 2013, 117, 25926–25932.
Yasin, G.; Ibrahim, S.; Ibraheem, S.; Ali, S.; Iqbal, R.; Kumar, A.; Tabish, M.; Slimani, Y.; Nguyen, T. A.; Xu, H. et al. Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc-air batteries. J. Mater. Chem. A 2021, 9, 18222–18230.
Yasin, G.; Ibraheem, S.; Ali, S.; Arif, M.; Ibrahim, S.; Iqbal, R.; Kumar, A.; Tabish, M.; Mushtaq, M. A.; Saad, A. et al. Defects-engineered tailoring of tri-doped interlinked metal-free bifunctional catalyst with lower gibbs free energy of OER/HER intermediates for overall water splitting. Mater. Today Chem. 2022, 23, 100634.
Nadeem, M.; Yasin, G.; Arif, M.; Tabassum, H.; Bhatti, M. H.; Mehmood, M.; Yunus, U.; Iqbal, R.; Nguyen, T. A.; Slimani, Y. et al. Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chem. Eng. J. 2021, 409, 128205.
Kumar, A.; Yasin, G.; Vashistha, V. K.; Das, D. K.; Rehman, M. U.; Iqbal, R.; Mo, Z. S.; Nguyen, T. A.; Slimani, Y.; Nazir, M. T. et al. Enhancing oxygen reduction reaction performance via CNTs/graphene supported iron protoporphyrin IX: A hybrid nanoarchitecture electrocatalyst. Diam. Relat. Mater. 2021, 113, 108272.
Guerret-Piécourt, C.; Le Bouar, Y.; Lolseau, A.; Pascard, H. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 1994, 372, 761–765.
Hayashi, T.; Hirono, S.; Tomita, M.; Umemura, S. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 1996, 381, 772–774.
Xu, N. N.; Zhang, Y. X.; Wang, Y. D.; Wang, M.; Su, T. S.; Coco, C. A.; Qiao, J. L.; Zhou, X. D. Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries. Appl. Energy 2020, 279, 115876.
Xu, N. N.; Zhang, Y. X.; Wang, M.; Fan, X. J.; Zhang, T.; Peng, L. W.; Zhou, X. D.; Qiao, J. L. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy 2019, 65, 104021.
Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Mater. Chem. Front. 2019, 3, 520–531.
Iqbal, R.; Ali, S.; Yasin, G.; Ibraheem, S.; Tabish, M.; Hamza, M.; Chen, H. N.; Xu, H.; Zeng, J.; Zhao, W. A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction. Chem. Eng. J. 2022, 430, 132642.
Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.
Nadeem, M.; Yasin, G.; Bhatti, M. H.; Mehmood, M.; Arif, M.; Dai, L. M. Pt-M bimetallic nanoparticles (M = Ni, Cu, Er) supported on metal organic framework-derived N-doped nanostructured carbon for hydrogen evolution and oxygen evolution reaction. J. Power Sources 2018, 402, 34–42.
Zhang, E. H.; Xie, Y.; Ci, S. Q.; Jia, J. C.; Cai, P. W.; Yi, L. C.; Wen, Z. H. Multifunctional high-activity and robust electrocatalyst derived from metal-organic frameworks. J. Mater. Chem. A 2016, 4, 17288–17298.
Zeng, M.; Liu, Y. L.; Zhao, F. P.; Nie, K. Q.; Han, N.; Wang, X. X.; Huang, W. J.; Song, X. N.; Zhong, J.; Li, Y. G. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries. Adv. Funct. Mater. 2016, 26, 4397–4404.
Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 2017, 27, 1606497.
Hao, Y. C.; Lu, Z. Y.; Zhang, G. X.; Chang, Z.; Luo, L.; Sun, X. M. Cobalt-embedded nitrogen-doped carbon nanotubes as high-performance bifunctional oxygen catalysts. Energy Technol. 2017, 5, 1265–1271.
Wang, S. G.; Qin, J. W.; Meng, T.; Cao, M. H. Metal–organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 2017, 39, 626–638.
Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.
Gao, L. C.; Chen, S.; Cai, R. S.; Zhao, Q. S.; Zhao, X. L.; Yang, D. J. DUT-58 (Co) derived synthesis of Co clusters as efficient oxygen reduction electrocatalyst for zinc-air battery. Glob. Chall. 2018, 2, 1700086.
Wang, T. T.; Kou, Z. K.; Mu, S. C.; Liu, J. P.; He, D. P.; Amiinu, I. S.; Meng, W.; Zhou, K.; Luo, Z. X.; Chaemchuen, S. et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1705048.
Yang, L.; Lv, Y. L.; Cao, D. P. Co, N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2018, 6, 3926–3932.
Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.
Han, H. J.; Chao, S. J.; Bai, Z. Y.; Wang, X. B.; Yang, X. L.; Qiao, J. L.; Chen, Z. W.; Yang, L. Metal-organic-framework-derived CO nanoparticles deposited on N-doped bimodal mesoporous carbon nanorods as efficient bifunctional catalysts for rechargeable zinc-air batteries. ChemElectroChem 2018, 5, 1868–1873.
Zang, W. J.; Sumboja, A.; Ma, Y. Y.; Zhang, H.; Wu, Y.; Wu, S. S.; Wu, H. J.; Liu, Z. L.; Guan, C.; Wang, J. et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 2018, 8, 8961–8969.
Yang, Y.; Wang, C. L.; Gao, S. Q.; Mao, K. T.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Hu, L.; Chen, Q. W. Incorporation of Cu-Nx cofactors into graphene encapsulated Co as biomimetic electrocatalysts for efficient oxygen reduction. Nanoscale 2018, 10, 21076–21086.
Ji, D. X.; Fan, L.; Li, L. L.; Mao, N.; Qin, X. H.; Peng, S. J.; Ramakrishna, S. Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon 2019, 142, 379–387.
Liu, G. H.; Li, J. D.; Fu, J.; Jiang, G. P.; Lui, G.; Luo, D.; Deng, Y. P.; Zhang, J.; Cano, Z. P.; Yu, A. P. et al. An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 2019, 31, 1806761.
Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698.
Zhou, B. J.; Liu, Y. Y.; Wu, X. L.; Liu, H.; Liu, T.; Wang, Y.; Mehdi, S.; Jiang, J. C.; Li, B. J. Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries. Nano Res. 2022, 15, 1415–1423.
Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.
Yang, H. Z.; Wang, B.; Li, H. Y.; Ni, B.; Wang, K.; Zhang, Q.; Wang, X. Trimetallic sulfide mesoporous nanospheres as superior electrocatalysts for rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1801839.
Li, Z. T.; Yang, T. T.; Zhao, W. N.; Xu, T.; Wei, L. Q.; Feng, J. Z.; Yang, X. J.; Ren, H.; Wu, M. B. Structural modulation of Co catalyzed carbon nanotubes with Cu-Co bimetal active center to inspire oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 3937–3945.
Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem., Int. Ed. 2018, 57, 1856–1862.
Cai, P. W.; Hong, Y.; Ci, S. Q.; Wen, Z. H. In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries. Nanoscale 2016, 8, 20048–20055.
Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In Situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.
Liu, Y. L.; Chen, F. J.; Ye, W.; Zeng, M.; Han, N.; Zhao, F. P.; Wang, X. X.; Li, Y. G. High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal–air batteries. Adv. Funct. Mater. 2017, 27, 1606034.
Aiyappa, H. B.; Bhange, S. N.; Sivasankaran, V. P.; Kurungot, S. Single cell fabrication towards the realistic evaluation of a CNT-strung ZIF-derived electrocatalyst as a cathode material in alkaline fuel cells and metal-air batteries. ChemElectroChem 2017, 4, 2928–2933.
Gao, T. T.; Jin, Z. Y.; Zhang, Y. J.; Tan, G. Q.; Yuan, H. Y.; Xiao, D. Coupling cobalt-iron bimetallic nitrides and N-doped multi-walled carbon nanotubes as high-performance bifunctional catalysts for oxygen evolution and reduction reaction. Electrochim. Acta 2017, 258, 51–60.
He, G. J.; Han, X. Y.; Moss, B.; Weng, Z.; Gadipelli, S.; Lai, F. L.; Kafizas, A. G.; Brett, D. J. L.; Guo, Z. X.; Wang, H. L. et al. Solid solution nitride/carbon nanotube hybrids enhance electrocatalysis of oxygen in zinc-air batteries. Energy Storage Mater. 2018, 15, 380–387.
Guan, C.; Sumboja, A.; Zang, W. J.; Qian, Y. H.; Zhang, H.; Liu, X. M.; Liu, Z. L.; Zhao, D.; Pennycook, S. J.; Wang, J. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Stor. Mater. 2019, 16, 243–250.
Chen, L. L.; Zhang, Y. L.; Liu, X. J.; Long, L.; Wang, S. Y.; Xu, X. L.; Liu, M. C.; Yang, W. X.; Jia, J. B. Bifunctional oxygen electrodes of homogeneous Co4N nanocrystals@N-doped carbon hybrids for rechargeable Zn-air batteries. Carbon 2019, 151, 10–17.
Cai, J. N.; Zhang, X. F.; Yang, M. X.; Shi, Y. D.; Liu, W. K.; Lin, S. Constructing Co@WC1−x heterostructure on N-doped carbon nanotubes as an efficient bifunctional electrocatalyst for zinc-air batteries. J. Power Sources 2021, 485, 229251.
Huang, K. X.; Yang, Z. Y.; Liu, L.; Yang, X.; Fan, Y. J.; Sun, M. L.; Liu, C. Z.; Chen, W.; Yang, J. A dual ligand coordination strategy for synthesizing drum-like Co, N co-doped porous carbon electrocatalyst towards superior oxygen reduction and zinc-air batteries. Int. J. Hydrogen Energy 2021, 46, 24472–24483.
Xiao, X.; Li, X. H.; Yu, G. Q.; Wang, J. X.; Yan, G. C.; Wang, Z. X.; Guo, H. J. FeCox alloy nanoparticles encapsulated in three-dimensionally N-doped porous carbon/multiwalled carbon nanotubes composites as bifunctional electrocatalyst for zinc-air battery. J. Power Sources 2019, 438, 227019.
Rao, P.; Cui, P.; Yang, L.; Wang, M. S.; Wang, S.; Cai, H.; Wang, Y.; Zhao, X. S.; Wilkinson, D. P.; Zhang, J. J. Surface plasma-etching treatment of cobalt nanoparticles-embedded honeysuckle-like nitrogen-doped carbon nanotubes to produce high-performance catalysts for rechargeable zinc-air batteries. J. Power Sources 2020, 453, 227858.
Xiao, C. X.; Luo, J. J.; Tan, M. Y.; Xiao, Y. Y.; Gao, B. F.; Zheng, Y.; Lin, B. Z. Co/CoNx decorated nitrogen-doped porous carbon derived from melamine sponge as highly active oxygen electrocatalysts for zinc-air batteries. J. Power Sources 2020, 453, 227900.
Niu, H. J.; Chen, S. S.; Feng, J. J.; Zhang, L.; Wang, A. J. Assembled hollow spheres with CoFe alloyed nanocrystals encapsulated in N, P-doped carbon nanovesicles: An ultra-stable bifunctional oxygen catalyst for rechargeable Zn-air battery. J. Power Sources 2020, 475, 228594.
Tan, M. Y.; Xiao, Y. Y.; Xi, W. H.; Lin, X. F.; Gao, B. F.; Chen, Y. L.; Zheng, Y.; Lin, B. Z. Cobalt-nanoparticle impregnated nitrogen-doped porous carbon derived from Schiff-base polymer as excellent bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Power Sources 2021, 490, 229570.
Jin, Q. Y.; Ren, B. W.; Chen, J. P.; Cui, H.; Wang, C. X. A facile method to conduct 3D self-supporting Co-FeCo/N-doped graphene-like carbon bifunctional electrocatalysts for flexible solid-state zinc air battery. Appl. Catal. B 2019, 256, 117887.
Zou, H. Y.; Li, G.; Duan, L. L.; Kou, Z. K.; Wang, J. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. Appl. Catal. B 2019, 259, 118100.
Qin, J. Y.; Liu, Z. W.; Wu, D. Y.; Yang, J. Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co–N–C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Appl. Catal. B 2020, 278, 119300.
Peng, W.; Yang, X. X.; Mao, L. C.; Jin, J. H.; Yang, S. L.; Zhang, J. J.; Li, G. ZIF-67-derived Co nanoparticles anchored in N doped hollow carbon nanofibers as bifunctional oxygen electrocatalysts. Chem. Eng. J. 2021, 407, 127157.
Wei, H. L.; Tan, A. D.; Hu, S. Z.; Piao, J. H.; Fu, Z. Y. Efficient spinel iron-cobalt oxide/nitrogen-doped ordered mesoporous carbon catalyst for rechargeable zinc-air batteries. Chin. J. Catal. 2021, 42, 1451–1458.
Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099.
Peng, X. M.; Wei, L. C.; Liu, Y. Y.; Cen, T. L.; Ye, Z. F.; Zhu, Z. G.; Ni, Z. T.; Yuan, D. S. Cobalt nanoparticles embedded in N-doped carbon nanotubes on reduced graphene oxide as efficient oxygen catalysts for Zn-air batteries. Energy Fuels 2020, 34, 8931–8938.
Luo, X.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Gu, W. L.; Zhu, C. Z. Hexamine-coordination-framework-derived Co-N-doped carbon nanosheets for robust oxygen reduction reaction. ACS Sustain. Chem. Eng. 2020, 8, 9721–9730.
Dong, F.; Liu, C.; Wu, M. J.; Guo, J. N.; Li, K. X.; Qiao, J. L. Hierarchical porous carbon derived from coal tar pitch containing discrete Co-Nx-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Sustain. Chem. Eng. 2019, 7, 8587–8596.
Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163–173.
Qiu, L. Z.; Han, X. P.; Lu, Q.; Zhao, J.; Wang, Y.; Chen, Z. L.; Zhong, C.; Hu, W. B.; Deng, Y. D. Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Inorg. Chem. Front. 2019, 6, 3554–3561.
Qi, Y. G.; Yuan, S.; Cui, L. L.; Wang, Z. Z.; He, X. Q.; Zhang, W.; Asefa, T. (Fe, Co)/N-doped multi-walled carbon nanotubes as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. ChemCatChem 2020, 13, 1023–1033.
Chen, Y. S.; Zhang, W. H.; Zhu, Z. Y.; Zhang, L. L.; Yang, J. Y.; Chen, H. H.; Zheng, B.; Li, S.; Zhang, W. N.; Wu, J. S. et al. Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc-air batteries. J. Mater. Chem. A 2020, 8, 7184–7191.
Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. , Int. Ed. 2013, 52, 371–375.
Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.
Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.
Xu, N. N.; Wilson, J. A.; Wang, Y. D.; Su, T. S.; Wei, Y. N.; Qiao, J. L.; Zhou, X. D.; Zhang, Y. X.; Sun, S. H. Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. Appl. Catal. B 2020, 272, 118953.
Xu, N. N.; Qiao, J. L. Recent progress in bifunctional catalysts for zinc-air batteries. J. Electrochem. 2020, 26, 531–562.
Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342–2348.
Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlogl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718–7725.
Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.
Du, G. J.; Liu, X. G.; Zong, Y.; Hor, T. S. A.; Yu, A. S.; Liu, Z. L. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries. Nanoscale 2013, 5, 4657–4661.
Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.
Liu, X. E.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G. et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 2015, 25, 5799–5808.
Fu, J.; Hassan, F. M.; Li, J. D.; Lee, D. U.; Ghannoum, A. R.; Lui, G.; Hoque, A.; Chen, Z. W. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array. Adv. Mater. 2016, 28, 6421–6428.
Xu, N. N.; Liu, Y. Y.; Zhang, X.; Li, X. M.; Li, A. J.; Qiao, J. L.; Zhang, J. J. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. Sci. Rep. 2016, 6, 33590.
He, Y.; Zhang, J. F.; He, G. W.; Han, X. P.; Zheng, X. R.; Zhong, C.; Hu, W. B.; Deng, Y. D. Ultrathin Co3O4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries. Nanoscale 2017, 9, 8623–8630.
Li, X. M.; Xu, N. N.; Li, H. R.; Wang, M.; Zhang, L.; Qiao, J. L. 3D hollow sphere Co3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery. Green Energy Environ. 2017, 2, 316–328.
Song, Z. S.; Han, X. P.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B.; Zhong, C. Clarifying the controversial catalytic performance of Co(OH)2 and Co3O4 for oxygen reduction/evolution reactions toward efficient Zn-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 22694–22703.
Zeng, S.; Chen, H. Y.; Wang, H.; Tong, X.; Chen, M. H.; Di, J. T.; Li, Q. W. Crosslinked carbon nanotube aerogel films decorated with cobalt oxides for flexible rechargeable Zn-air batteries. Small 2017, 13, 1700518.
Hao, Y. C.; Xu, Y. Q.; Han, N. N.; Liu, J. F.; Sun, X. M. Boosting the bifunctional electrocatalytic oxygen activities of CoOx nanoarrays with a porous N-doped carbon coating and their application in Zn-air batteries. J. Mater. Chem. A 2017, 5, 17804–17810.
Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.
Wang, C. W.; Zhao, Z.; Li, X. F.; Yan, R.; Wang, J.; Li, A. N.; Duan, X. Y.; Wang, J. Y.; Liu, Y.; Wang, J. Z. Three-dimensional framework of graphene nanomeshes shell/Co3O4 synthesized as superior bifunctional electrocatalyst for zinc-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 41273–41283.
Ren, J. T.; Yuan, G. G.; Weng, C. C.; Yuan, Z. Y. Rationally designed Co3O4-C nanowire arrays on Ni foam derived from metal organic framework as reversible oxygen evolution electrodes with enhanced performance for Zn-air batteries. ACS Sustain. Chem. Eng. 2017, 6, 707–718.
Li, X. M.; Dong, F.; Xu, N. N.; Zhang, T.; Li, K. X.; Qiao, J. L. Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2018, 10, 15591–15601.
Nie, Q.; Cai, Y. X.; Xu, N. N.; Peng, L. W.; Qiao, J. L. Highly stabilized zinc-air batteries based on nanostructured Co3O4 composites as efficient bifunctional electrocatalyst. ChemElectroChem 2018, 5, 1976–1984.
Ma, L. T.; Chen, S. M.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Zhi, C. Y. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12, 8597–8605.
Li, M.; Luo, F.; Zhang, Q.; Yang, Z. H.; Xu, Z. K. Atomic layer Co3O4-x nanosheets as efficient and stable electrocatalyst for rechargeable zinc-air batteries. J. Catal. 2020, 381, 395–401.
Yu, N. F.; Wu, C.; Huang, W.; Chen, Y. H.; Ruan, D. Q.; Bao, K. L.; Chen, H.; Zhang, Y.; Zhu, Y. S.; Huang, Q. H. et al. Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy 2020, 77, 105200.
Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. G.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv. Mater. 2019, 31, 1807468.
Zhong, Y. T.; Pan, Z. H.; Wang, X. S.; Yang, J.; Qiu, Y. C.; Xu, S. Y.; Lu, Y. T.; Huang, Q. M.; Li, W. S. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 2019, 6, 1802243.
Bera, R. K.; Park, H.; Ryoo, R. Co3O4 nanosheets on zeolite-templated carbon as an efficient oxygen electrocatalyst for a zinc-air battery. J. Mater. Chem. A 2019, 7, 9988–9996.
Ling, Y.; Li, M.; Qu, K. G.; Yang, Z. H. Electronically interacted Co3O4/WS2 as superior oxygen electrode for rechargeable zinc-air batteries. Chem. Commun. 2020, 56, 15193–15196.
Lee, D. U.; Scott, J.; Park, H. W.; Abureden, S.; Choi, J. Y.; Chen, Z. W. Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc-air battery applications. Electrochem. Commun. 2014, 43, 109–112.
Park, M. G.; Lee, D. U.; Seo, M. H.; Cano, Z. P.; Chen, Z. W. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries. Small 2016, 12, 2707–2714.
Yu, Z.; Bai, Y.; Zhang, S. M.; Liu, Y. X.; Zhang, N. Q.; Sun, K. N. Metal-organic framework-derived Zn0.975Co0.025S/CoS2 embedded in N, S-codoped carbon nanotube/nanopolyhedra as an efficient electrocatalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 10441–10446.
Yu, M. H.; Wang, Z. K.; Hou, C.; Wang, Z. L.; Liang, C. L.; Zhao, C. Y.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868.
Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Ni, M. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Appl. Catal. B 2019, 241, 104–112.
Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595.
Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Liu, M. L.; Shao, Z. P.; Ni, M. Co3O4 nanosheets as active material for hybrid Zn batteries. Small 2018, 14, 1800225.
Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Ni, M. Investigation on the electrode design of hybrid Zn-Co3O4/air batteries for performance improvements. Electrochim. Acta 2018, 283, 1028–1036.
Qu, S. X.; Song, Z. S.; Liu, J.; Li, Y. B.; Kou, Y.; Ma, C.; Han, X. P.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B. et al. Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics. Nano Energy 2017, 39, 101–110.
Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y. D.; Han, X. P.; Wu, T. P.; Hu, W. B. et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater. 2017, 7, 1700779.
Chen, X.; Zhong, C.; Liu, B.; Liu, Z.; Bi, X. X.; Zhao, N. Q.; Han, X. P.; Deng, Y. D.; Lu, J.; Hu, W. B. Atomic layer Co3O4 nanosheets: The key to knittable Zn-air batteries. Small 2018, 14, 1702987.
Singh, S. K.; Dhavale, V. M.; Kurungot, S. Surface-tuned Co3O4 nanoparticles dispersed on nitrogen-doped graphene as an efficient cathode electrocatalyst for mechanical rechargeable zinc-air battery application. ACS Appl. Mater. Interfaces 2015, 7, 21138–21149.
Lee, D. U.; Park, M. G.; Park, H. W.; Seo, M. H.; Wang, X. L.; Chen, Z. W. Highly active and durable nanocrystal-decorated bifunctional electrocatalyst for rechargeable zinc-air batteries. ChemSusChem 2015, 8, 3129–3138.
Wang, Y. Q.; Yin, X.; Shen, H. B.; Jiang, H.; Yu, J. W.; Zhang, Y. F.; Li, D. W.; Li, W. Z.; Li, J. Co3O4@g-C3N4 supported on N-doped graphene as effective electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 2018, 43, 20687–20695.
Li, B.; Ge, X. M.; Goh, F. W. T.; Hor, T. S. A.; Geng, D. S.; Du, G. J.; Liu, Z. L.; Zhang, J.; Liu, X. G.; Zong, Y. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale 2015, 7, 1830–1838.
Lee, D.; Kim, H. W.; Kim, J. M.; Kim, K. H.; Lee, S. Y. Flexible/rechargeable Zn-air batteries based on multifunctional heteronanomat architecture. ACS Appl. Mater. Interfaces 2018, 10, 22210–22217.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.
Zhan, Y.; Xu, C. H.; Lu, M. H.; Liu, Z. L.; Lee, J. Y. Mn and Co co-substituted Fe3O4 nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution. J. Mater. Chem. A 2014, 2, 16217–16223.
Prabu, M.; Ketpang, K.; Shanmugam, S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 2014, 6, 3173–3181.
Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.
Liu, X. E.; Park, M.; Kim, M. G.; Gupta, S.; Wang, X. J.; Wu, G.; Cho, J. High-performance non-spinel cobalt-manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc-air batteries. Nano Energy 2016, 20, 315–325.
Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.
Yang, J.; Fujigaya, T.; Nakashima, N. Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions. Sci. Rep. 2017, 7, 45384.
Kuang, M.; Wang, Q. H.; Ge, H. T.; Han, P.; Gu, Z. X.; Al-Enizi, A. M.; Zheng, G. F. CuCoOx/FeOOH core–shell nanowires as an efficient bifunctional oxygen evolution and reduction catalyst. ACS Energy Lett. 2017, 2, 2498–2505.
Qaseem, A.; Chen, F. Y.; Qiu, C. Z.; Mahmoudi, A.; Wu, X. Q.; Wang, X. L,; Johnston, R. L. Reduced graphene oxide decorated with manganese cobalt oxide as multifunctional material for mechanically rechargeable and hybrid zinc-air batteries. Part. Part. Syst. Charact. 2017, 34, 1700097.
Wei, L.; Karahan, H. E.; Zhai, S. L.; Liu, H. W.; Chen, X. C.; Zhou, Z.; Lei, Y. J.; Liu, Z. W.; Chen, Y. Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater. 2017, 29, 1701410.
Lu, Y. T.; Chien, Y. J.; Liu, C. F.; You, T. H.; Hu, C. C. Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M0.1Ni0.9Co2O4 (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc-air batteries. J. Mater. Chem. A 2017, 5, 21016–21026.
Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N–Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.
Zhang, Y. Q.; Li, M.; Hua, B.; Wang, Y.; Sun, Y. F.; Luo, J. L. A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B 2018, 236, 413–419.
Zou, Y. H.; Chang, G. J.; Jia, Y.; Cai, R. S.; Chen, S.; Xia, Y. Z.; Theis, W.; Yang, D. J.; Yao, X. D. Generating lithium vacancies through delithiation of Li(NixCoyMnz)O2 towards bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy Storage Mater. 2018, 15, 202–208.
Xiao, X.; Hu, X. Y.; Liang, Y.; Zhang, G. L.; Wang, X. Y.; Yan, Y. C.; Li, X. H.; Yan, G. C.; Wang, J. X. Anchoring NiCo2O4 nanowhiskers in biomass-derived porous carbon as superior oxygen electrocatalyst for rechargeable Zn-air battery. J. Power Sources 2020, 476, 228684.
Zhang, Z. M.; Sun, H. N.; Li, J. F.; Shi, Z. H.; Fan, M. H.; Bian, H. Q.; Wang, T.; Gao, D. Q. S-doped CoMn2O4 with more high valence metallic cations and oxygen defects for zinc-air batteries. J. Power Sources 2021, 491, 229584.
Bian, J. J.; Cheng, X. P.; Meng, X. Y.; Wang, J.; Zhou, J. G.; Li, S. Q.; Zhang, Y. F.; Sun, C. W. Nitrogen-doped NiCo2O4 microsphere as an efficient catalyst for flexible rechargeable zinc-air batteries and self-charging power system. ACS Appl. Energy Mater. 2019, 2, 2296–2304.
Zhao, J.; He, Y.; Chen, Z. L.; Zheng, X. R.; Han, X. P.; Rao, D. W.; Zhong, C.; Hu, W. B.; Deng, Y. D. Engineering the surface metal active sites of nickel cobalt oxide nanoplates toward enhanced oxygen electrocatalysis for Zn-air battery. ACS Appl. Mater. Interfaces 2018, 11, 4915–4921.
Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High electrochemical performance of monodisperse NiCo2O2 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 981–988.
Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347–351.
Zhang, L. X.; Zhang, S. L.; Zhang, K. J.; Xu, G. J.; He, X.; Dong, S. M.; Liu, Z. H.; Huang, C. S.; Gu, L.; Cui, G. L. Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries. Chem. Commun. 2013, 49, 3540–3542.
Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.
Ma, N.; Jia, Y.; Yang, X. F.; She, X. L.; Zhang, L. Z.; Peng, Z.; Yao, X. D.; Yang, D. J. Seaweed biomass derived (Ni, Co)/CNT nanoaerogels: Efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. J. Mater. Chem. A 2016, 4, 6376–6384.
Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728.
Menezes, P. W.; Indra, A.; Sahraie, N. R.; Bergmann, A.; Strasser, P.; Driess, M. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. ChemSusChem 2015, 8, 164–171.
Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.
Wei, C.; Feng, Z. X.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 2017, 29, 1606800.
Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13291–13296.
Calvillo, L.; Carraro, F.; Vozniuk, O.; Celorrio, V.; Nodari, L.; Russell, A. E.; Debellis, D.; Fermin, D.; Cavani, F.; Agnoli, S. et al. Insights into the durability of Co-Fe spinel oxygen evolution electrocatalysts via operando studies of the catalyst structure. J. Mater. Chem. A 2018, 6, 7034–7041.
Vante, N. A.; Tributsch, H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 1986, 323, 431–432.
Trapp, V.; Christensen, P.; Hamnett, A. New catalysts for oxygen reduction based on transition-metal sulfides. J. Chem. Soc. Faraday Trans. 1996, 92, 4311–4319.
Behret, H.; Binder, H.; Sandstede, G. Electrocatalytic oxygen reduction with thiospinels and other sulphides of transition metals. Electrochim. Acta 1975, 20, 111–117.
Wang, Z. L.; Xiao, S.; An, Y. M.; Long, X.; Zheng, X. L.; Lu, X. H.; Tong, Y. X.; Yang, S. H. Co(II)1−xCo(0)x/3Mn(III)2x/3S nanoparticles supported on B/N-codoped mesoporous nanocarbon as a bifunctional electrocatalyst of oxygen reduction/evolution for high-performance zinc-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 13348–13359.
Han, X. P.; Wu, X. Y.; Zhong, C.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B. NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 2017, 31, 541–550.
Wu, X. Y.; Han, X. P.; Ma, X. Y.; Zhang, W.; Deng, Y. D.; Zhong, C.; Hu, W. B. Morphology-controllable synthesis of Zn-Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc-air batteries and water electrolysis. ACS Appl. Mater. Interfaces 2017, 9, 12574–12583.
Ni, W. P.; Liu, S. M.; Du, C.; Fei, Y. Q.; He, Y. D.; Ma, X. Y.; Lu, L. J.; Deng, Y. Q. Ionic liquids as phosphorus sources for preparation of cobalt phosphide and multiple heteroatom-doped mesoporous carbon with high electrocatalytic activity toward oxygen reduction reaction. Int. J. Hydrogen Energy 2017, 42, 19019–19027.
Ahn, S. H.; Manthiram, A. Cobalt phosphide coupled with heteroatom-doped nanocarbon hybrid electroctalysts for efficient, long-life rechargeable zinc-air batteries. Small 2017, 13, 1702068.
Cheng, Y. F.; Liao, F.; Shen, W.; Liu, L. B.; Jiang, B. B.; Li, Y. Q.; Shao, M. W. Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc-air batteries. Nanoscale 2017, 9, 18977–18982.
Niu, W. H.; Li, Z.; Marcus, K.; Zhou, L.; Li, Y. L.; Ye, R. Q.; Liang, K.; Yang, Y. Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries. Adv. Energy Mater. 2018, 8, 1701642.
Li, Y.; Zhou, W.; Dong, J. C.; Luo, Y.; An, P. F.; Liu, J.; Wu, X.; Xu, G. L.; Zhang, H. B.; Zhang, J. Interface engineered in situ anchoring of Co9S8 nanoparticles into a multiple doped carbon matrix: Highly efficient zinc-air batteries. Nanoscale 2018, 10, 2649–2657.
Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.
Liu, W. W.; Zhang, J.; Bai, Z. Y.; Jiang, G. P.; Li, M.; Feng, K.; Yang, L.; Ding, Y. L.; Yu, T. W.; Chen, Z. W. et al. Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn-air battery. Adv. Funct. Mater. 2018, 28, 1706675.
Zou, H. Y.; He, B. W.; Kuang, P. Y.; Yu, J. G.; Fan, K. Metal–organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2018, 10, 22311–22319.
Li, Y.; Zhou, Y. Z.; Wen, H. J.; Yang, J.; Maouche, C.; Liu, Q. Q.; Wu, Y. Y.; Cheng, C.; Zhu, J.; Cheng, X. N. N, S-atom-coordinated Co9S8 trinary dopants within a porous graphene framework as efficient catalysts for oxygen reduction/evolution reactions. Dalton Trans. 2018, 47, 14992–15001.
Fu, G. T.; Wang, J.; Chen, Y. F.; Liu, Y.; Tang, Y. W.; Goodenough, J. B.; Lee, J. M. Exploring indium-based ternary thiospinel as conceivable high-potential air-cathode for rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1802263.
Ding, J. T.; Ji, S.; Wang, H.; Pollet, B. G.; Wang, R. F. Mesoporous CoS/N-doped carbon as HER and ORR bifunctional electrocatalyst for water electrolyzers and zinc-air batteries. ChemCatChem 2019, 11, 1026–1032.
Fang, W. G.; Hu, H. B.; Jiang, T. T.; Li, G.; Wu, M. Z. N- and S-doped porous carbon decorated with in-situ synthesized Co–Ni bimetallic sulfides particles: A cathode catalyst of rechargeable Zn-air batteries. Carbon 2019, 146, 476–485.
Liang, Y. X.; Gong, Q. J.; Sun, X. L.; Xu, N. N.; Gong, P. N.; Qiao, J. L. Rational fabrication of thin-layered NiCo2S4 loaded graphene as bifunctional non-oxide catalyst for rechargeable zinc-air batteries. Electrochim. Acta 2020, 342, 136108.
Ramakrishnan, S.; Balamurugan, J.; Vinothkannan, M.; Kim, A. R.; Sengodan, S.; Yoo, D. J. Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries. Appl. Catal. B 2020, 279, 119381.
Li, W. Q.; Li, Y. H.; Fu, H. Q.; Yang, G. X.; Zhang, Q.; Chen, S. Z.; Peng, F. Phosphorus doped Co9S8@CS as an excellent air-electrode catalyst for zinc-air batteries. Chem. Eng. J. 2020, 381, 122683.
Gao, L.; Chang, S. M.; Zhang, Z. Y. High-quality CoFeP nanocrystal/N, P dual-doped carbon composite as a novel bifunctional electrocatalyst for rechargeable Zn-air battery. ACS Appl. Mater. Interfaces 2021, 13, 22282–22291.
Gao, J. C.; Wang, J. M.; Zhou, L. J.; Cai, X. Y.; Zhan, D.; Hou, M. Z.; Lai, L. F. Co2P@N, P-codoped carbon nanofiber as a free-standing air electrode for Zn-air batteries: Synergy effects of CoNx satellite shells. ACS Appl. Mater. Interfaces 2019, 11, 10364–10372.
Cai, Z. C.; Yamada, I.; Yagi, S. ZIF-derived Co9−xNixS8 nanoparticles immobilized on N-doped carbons as efficient catalysts for high-performance zinc-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 5847–5856.
Chen, J. P.; Ni, B. Q.; Hu, J. G.; Wu, Z. X.; Jin, W. Defective graphene aerogel-supported Bi-CoP nanoparticles as a high-potential air cathode for rechargeable Zn-air batteries. J. Mater. Chem. A 2019, 7, 22507–22513.
Zhang, H. M.; Hu, C. Y.; Ji, M. W.; Wang, M. J.; Yu, J. L.; Liu, H. C.; Zhu, C. Z.; Xu, J. Co/Co9S8@carbon nanotubes on a carbon sheet: Facile controlled synthesis, and application to electrocatalysis in oxygen reduction/oxygen evolution reactions, and to a rechargeable Zn-air battery. Inorg. Chem. Front. 2021, 8, 368–375.
Han, H. J.; Bai, Z. Y.; Zhang, T.; Wang, X. B.; Yang, X. L.; Ma, X. M.; Zhang, Y. P.; Yang, L.; Lu, J. Hierarchical design and development of nanostructured trifunctional catalysts for electrochemical oxygen and hydrogen reactions. Nano Energy 2019, 56, 724–732.
Liu, Q.; Jin, J. T.; Zhang, J. Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002–5008.
Ganesan, P.; Prabu, M.; Sanetuntikul, J.; Shanmugam, S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 2015, 5, 3625–3637.
Von Känel, H.; Gantert, L.; Hauger, R.; Wachter, P. Photoelectrochemical production of hydrogen from p-type transition metal phosphides. Int. J. Hydrogen Energy 1985, 10, 821–827.
Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 2015, 15, 7616–7620.
Hao, Y. C.; Xu, Y. Q.; Liu, W.; Sun, X. M. Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Mater. Horiz. 2018, 5, 108–115.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Bai, Z. Y.; Li, S. S.; Fu, J.; Zhang, Q.; Chang, F. F.; Yang, L.; Lu, J.; Chen, Z. W. Metal–organic framework-derived nickel cobalt oxysulfide nanocages as trifunctional electrocatalysts for high efficiency power to hydrogen. Nano Energy 2019, 58, 680–686.
Song, X. K.; Guo, L. L.; Liao, X. M.; Liu, J.; Sun, J. H.; Li, X. P. Hollow carbon nanopolyhedra for enhanced electrocatalysis via confined hierarchical porosity. Small 2017, 13, 1700238.
Yu, Q. M.; Wu, C. X.; Xu, J. X.; Zhao, Y.; Zhang, J. S.; Guan, L. H. Nest-like assembly of the doped single-walled carbon nanotubes with unique mesopores as ultrastable catalysts for high power density Zn-air battery. Carbon 2018, 128, 46–53.
Ding, J. T.; Ji, S.; Wang, H.; Gai, H. J.; Liu, F. S.; Pollet, B. G.; Wang, R. F. N-doped porous transition metal-based carbon nanosheet networks as a multifunctional electrocatalyst for rechargeable zinc-air batteries. Chem. Commun. 2019, 55, 2924–2927.
Fu, K.; Wang, Y.; Mao, L. C.; Yang, X. X.; Jin, J. H.; Yang, S. L.; Li, G. Strongly coupled Co, N co-doped carbon nanotubes/graphene-like carbon nanosheets as efficient oxygen reduction electrocatalysts for primary zinc-air battery. Chem. Eng. J. 2018, 351, 94–102.
He, G. W.; Zhang, W.; Deng, Y. D.; Zhong, C.; Hu, W. B.; Han, X. P. Engineering pyrite-type bimetallic Ni-doped CoS2 nanoneedle arrays over a wide compositional range for enhanced oxygen and hydrogen electrocatalysis with flexible property. Catalysts 2017, 7, 366.
Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.
Chen, B. H.; He, X. B.; Yin, F. X.; Wang, H.; Liu, D. J.; Shi, R. X.; Chen, J. N.; Yin, H. W. MO-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 2017, 27, 1700795.
Wang, Z. J.; Lu, Y. Z.; Yan, Y.; Larissa, T. Y. P.; Zhang, X.; Wuu, D.; Zhang, H.; Yang, Y. H.; Wang, X. Core–shell carbon materials derived from metal–organic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy 2016, 30, 368–378.
Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H. Z.; Biradar, A. V.; Peng, D. L.; Zboril, R.; Varma, R. S. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590.
Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971.