AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives

Dongfang Chen1,§( )Lyuming Pan1,2,§Pucheng Pei1( )Xin Song1Peng Ren1Lu Zhang1,3
State Key Lab of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

§ Dongfang Chen and Lyuming Pan contributed equally to this work.

Show Author Information

Graphical Abstract

The synthesis methods, catalytic activity, and catalytic mechanism of various cobalt-basedelectrocatalysts are reviewed and evaluated, and strategies for developing high activity cobalt-basedelectrocatalysts for rechargeable zinc-air batteries are summarized and discussed.

Abstract

With the rapid economic growth and the deepening awareness of sustainable development, the demand for green and efficient energy storage equipment increases. As a promising energy storage and conversion device, zinc-air batteries (ZABs) have the advantages of high theoretical specific energy density, low cost, and environmental friendliness. Nevertheless, the efficiency of ZABs is closely related to the electrocatalytic capacity of the air electrode due to its sluggish kinetics for oxygen reduction and evolution reaction (ORR/OER). Therefore, it is necessary to develop efficient catalysts to promote the reaction rate. Recently, cobalt-based materials have become a research hotspot for oxygen electrocatalysts owing to their rich natural content, high catalytic activity, and stability. In this review, the mechanisms of the OER/ORR reaction process, the catalyst's performance characterization, and the various combination methods with the current collector are systematically introduced and analyzed. Further, a broad overview of cobalt-based materials used as electrocatalysts for ZABs is presented, including cobalt-based perovskite, cobalt-nitrogen-carbon (Co-N-C) materials, cobalt oxides, cobalt-containing composite oxides, and cobalt sulfides/phosphides. Finally, various strategies for developing efficient electrocatalysts for ZABs are summarized, highlighting the challenges and future perspectives in designing novel catalysts.

References

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

Chen, D. F.; Pan, L.; Pei, P. C.; Huang, S. W.; Ren, P.; Song, X. Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy 2021, 224, 120142.

3

Duan, X. D.; Pan, N.; Sun, C.; Zhang, K. X.; Zhu, X. K.; Zhang, M. D.; Song, L.; Zheng, H. G. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting. J. Energy Chem. 2021, 56, 290–298.

4

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

5

Lu, Z. J.; Yao, S. D.; Dong, Y. Z.; Wu, D. L.; Pan, H. R.; Huang, X. N.; Wang, T.; Sun, Z. Y.; Chen, X. X. Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Energy Chem. 2021, 56, 87–97.

6

Yuan, Y. F.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 2017, 8, 15806.

7

Zhao, J. B.; Zhang, Y. Y.; Wang, Y. H.; Li, H.; Peng, Y. Y. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J. Energy Chem. 2018, 27, 1536–1554.

8

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

9

Pei, P. C.; Chen, H. C. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: A review. Appl. Energy 2014, 125, 60–75.

10

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

11

Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336.

12

Pan, L.; Chen, D. F.; Pei, P. C.; Huang, S. W.; Ren, P.; Song, X. A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Appl. Energy 2021, 290, 116777.

13

Chen, D. W.; Cao, W.; Liu, J.; Wang, J.; Li, X. K.; Jiang, L. H. Filling the in situ-generated vacancies with metal cations captured by C–N bonds of defect-rich 3D carbon nanosheet for bifunctional oxygen electrocatalysis. J. Energy Chem. 2021, 59, 47–54.

14

Ni, S. Y.; Tan, S. S.; An, Q. Y.; Mai, L. Q. Three dimensional porous frameworks for lithium dendrite suppression. J. Energy Chem. 2020, 44, 73–89.

15

Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy. Adv. Sci. 2017, 4, 1600168.

16

Pei, P. C.; Chen, D. F.; Wu, Z. Y.; Ren, P. Nonlinear methods for evaluating and online predicting the lifetime of fuel cells. Appl. Energy 2019, 254, 113730.

17

Ren, P.; Pei, P. C.; Li, Y. H.; Wu, Z. Y.; Chen, D. F.; Huang, S. W. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci. 2020, 80, 100859.

18

Ren, P.; Pei, P. C.; Chen, D. F.; Li, Y. H.; Wu, Z. Y.; Zhang, L.; Li, Z. Z.; Wang, M. K.; Wang, H.; Wang, B. Z. et al. Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation. Appl. Energy 2022, 306, 118068.

19

Wang, Y.; Yang, Y.; Jia, S. F.; Wang, X. M.; Lyu, K.; Peng, Y. Q.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L. et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 2019, 10, 1506.

20

Wu, H.; Peng, T.; Kou, Z. K.; Cheng, K.; Zhang, J.; Zhang, J.; Meng, T.; Mu, S. C. In situ constructing of ultrastable ceramic@graphene core–shell architectures as advanced metal catalyst supports toward oxygen reduction. J. Energy Chem. 2017, 26, 1160–1167.

21

Benzigar, M. R.; Dasireddy, V. D. B. C.; Guan, X. W.; Wu, T.; Liu, G. Z. Advances on emerging materials for flexible supercapacitors: Current trends and beyond. Adv. Funct. Mater. 2020, 30, 2002993.

22

Shi, X. Y.; Zheng, S. H.; Wu, Z. S.; Bao, X. H. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 2018, 27, 25–42.

23

Li, Y.; Xu, K. D.; Zhang, Q.; Zheng, Z.; Li, S. N.; Zhao, Q. H.; Li, C.; Dong, C.; Mei, Z. W,; Pan, F. et al. One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery. J. Energy Chem. 2022, 66, 100–106.

24

Sheng, J.; Zhu, S.; Jia, G. D.; Liu, X.; Li, Y. Carbon nanotube supported bifunctional electrocatalysts containing iron–nitrogen–carbon active sites for zinc-air batteries. Nano Res. 2021, 14, 4541–4547.

25

Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygenreduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

26

Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 2019, 31, 1803800.

27

Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558–6625.

28

Wang, J. J.; Li, Y. L.; Sun, X. L. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2013, 2, 443–467.

29

Mori, R. All solid state rechargeable aluminum-air battery with deep eutectic solvent based electrolyte and suppression of byproducts formation. RSC Adv. 2019, 9, 22220–22226.

30

Xu, Y. F.; Zhao, Y.; Ren, J.; Zhang, Y.; Peng, H. S. An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem., Int. Ed. 2016, 55, 7979–7982.

31

Li, C. S.; Sun, Y.; Lai, W. H.; Wang, J. Z.; Chou, S. L. Ultrafine Mn3O4 nanowires/three-dimensional graphene/single-walled carbon nanotube composites: Superior electrocatalysts for oxygen reduction and enhanced Mg/air batteries. ACS Appl. Mater. Interfaces 2016, 8, 27710–27719.

32

Li, L. H.; Chen, H.; He, E.; Wang, L.; Ye, T. T.; Lu, J.; Jiao, Y. D.; Wang, J. C.; Gao, R.; Peng, H. S. et al. High-energy-density magnesium-air battery based on dual-layer gel electrolyte. Angew. Chem., Int. Ed. 2021, 60, 15317–15322.

33

Jiao, J. Q.; Pan, Y.; Wang, B.; Yang, W. J.; Liu, S. J.; Zhang, C. Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core–shell electrocatalysts for rechargeable zinc-air batteries. J. Energy Chem. 2021, 53, 364–371.

34

Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

35

Chen, X. C.; Zhou, Z.; Karahan, H. E.; Shao, Q.; Wei, L.; Chen, Y. Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 2018, 14, 1801929.

36

Wu, H. H.; Jiang, X. L.; Ye, Y. F.; Yan, C. C.; Xie, S. H.; Miao, S.; Wang, G. X.; Bao, X. H. Nitrogen-doped carbon nanotube encapsulating cobalt nanoparticles towards efficient oxygen reduction for zinc-air battery. J. Energy Chem. 2017, 26, 1181–1186.

37

Su, L. S.; Zhang, J. B.; Wang, C. J.; Zhang, Y. K.; Li, Z.; Song, Y.; Jin, T.; Ma, Z. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments. Appl. Energy 2016, 163, 201–210.

38

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

39

Wang, K. L.; Pei, P. C.; Wang, Y. C.; Liao, C.; Wang, W.; Huang, S. W. Advanced rechargeable zinc-air battery with parameter optimization. Appl. Energy 2018, 225, 848–856.

40

Wang, K. L.; Pei, P. C.; Wang, Y. C. Magnetic field improving interfacial behavior of the two-electrode system. J. Electrochem. Soc. 2017, 164, A3440–A3444.

41

Wang, S. G.; Wang, J.; Wang, X.; Li, L.; Qin, J. W.; Cao, M. H. Carbon hybrid with 3D nano-forest architecture in-situ catalytically constructed by CoFe alloy as advanced multifunctional electrocatalysts for Zn-air batteries-driven water splitting. J. Energy Chem. 2021, 53, 422–432.

42

Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual–metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

43

Luo, X. H.; Zhou, Q. L.; Du, S.; Li, J.; Zhong, J. W.; Deng, X. L.; Liu, Y. L. Porous Co9S8/nitrogen, sulfur-doped carbon@Mo2C dual catalyst for efficient water splitting. ACS Appl. Mater. Interfaces 2018, 10, 22291–22302.

44

Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.

45

Ma, Z.; Pei, P. C.; Wang, K. L.; Wang, X. Z.; Xu, H. C.; Liu, Y. F.; Peng, G. L. Degradation characteristics of air cathode in zinc air fuel cells. J. Power Sources 2015, 274, 56–64.

46

Pei, P. C.; Ma, Z.; Wang, K. L.; Wang, X. Z.; Song, M. C.; Xu, H. C. High performance zinc air fuel cell stack. J. Power Sources 2014, 249, 13–20.

47

Huang, H.; Kong, L. J.; Liu, M.; He, J.; Shuang, W.; Xu, Y. H.; Bu, X. H. Constructing bifunctional Co/MoC@N-C catalyst via an in-situ encapsulation strategy for efficient oxygen electrocatalysis. J. Energy Chem. 2021, 59, 538–546.

48

Shi, X. D.; Pu, Z. H.; Chi, B.; Liu, M. R.; Yu, S. Y.; Zheng, L.; Yang, L. J.; Shu, T.; Liao, S. J. Nitrogen and atomic Fe dual-doped porous carbon nanocubes as superior electrocatalysts for acidic H2-O2 PEMFC and alkaline Zn-air battery. J. Energy Chem. 2021, 59, 388–395.

49

Ye, Y. F.; Cai, F.; Yan, C. C.; Li, Y. S.; Wang, G. X.; Bao, X. H. Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. J. Energy Chem. 2017, 26, 1174–1180.

50

Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn-air batteries. Nano Res. 2017, 10, 4436–4447.

51

Han, Z.; Lin, S. Y.; Feng, J. J.; Zhang, L.; Zhang, Q. L.; Wang, A. J. Transitional metal alloyed nanoparticles entrapped into the highly porous N-doped 3D honeycombed carbon: A high-efficiency bifunctional oxygen electrocatalyst for boosting rechargeable Zn-air batteries. Int. J. Hydrogen Energy 2021, 46, 19385–19396.

52

Dong, F.; Wu, M.;Chen, Z.; Liu, X.;Zhang, G.; Qiao, J.; Sun, S. Atomically Dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nanomicro Lett. 2021, 14, 36.

53

Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–13844.

54

Liu, X. Z.; Tang, T.; Jiang, W. J.; Zhang, Q. H.; Gu, L.; Hu, J. S. Fe-doped Co3O4 polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc-air batteries. Chem. Commun. 2020, 56, 5374–5377.

55

Pan, H. R.; Huang, X. N.; Lu, Z. J.; Zhang, Z. Q.; An, B. G.; Wu, D. L.; Wang, T.; Chen, X. X.; Cheng, F. Y. Dual oxidation and sulfurization enabling hybrid Co/Co3O4@CoS in S/N-doped carbon matrix for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Chem. Eng. J. 2021, 419, 129619.

56

Yan, L.; Wang, H. Y.; Shen, J. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 2021, 403, 126385.

57

Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3d superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

58

Wu, M. J.; Zhang, G. X.; Chen, N.; Hu, Y. F.; Regier, T.; Rawach, D.; Sun, S. H. Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 2021, 6, 1153–1161.

59

Liu, S. S.; Ji, H. Q.; Wang, M. F.; Sun, H.; Liu, J.; Yan, C. L.; Qian, T. Atomic metal vacancy modulation of single-atom dispersed Co/N/C for highly efficient and stable air cathode. ACS Appl. Mater. Interfaces 2020, 12, 15298–15304.

60

Wei, L. C.; Qiu, L. J.; Liu, Y. Y.; Zhang, J. M.; Yuan, D. S.; Wang, L. Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries. ACS Sustain. Chem. Eng. 2019, 7, 14180–14188.

61

Pei, P. C.; Wang, K. L.; Ma, Z. Technologies for extending zinc-air battery’s cyclelife: A review. Appl. Energy 2014, 128, 315–324.

62

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

63

Wang, Y. J.; Long, W. Y.; Wang, L. L.; Yuan, R. S.; Ignaszak, A.; Fang, B. Z.; Wilkinson, D. P. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258–275.

64

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

65

Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.

66

Lima, F. H. B.; Calegaro, M. L.; Ticianelli, E. A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochim. Acta 2007, 52, 3732–3738.

67

Mao, L. Q.; Zhang, D.; Sotomura, T.; Nakatsu, K.; Koshiba, N.; Ohsaka, T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim. Acta 2003, 48, 1015–1021.

68

Ibraheem, S.; Li, X. T.; Shah, S. S. A.; Najam, T.; Yasin, G.; Iqbal, R.; Hussain, S.; Ding, W. Y.; Shahzad, F. Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 10972–10978.

69

Ge, X. M.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. L. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts. ACS Catal. 2015, 5, 4643–4667.

70
Horiuti, J.; Polanyi, M. Base lines of the theory of proton conduction. Acta Physicochim. URSS 1935, 2, 505–532.
71

Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.

72

Nørskov, J. K.; Stoltze, P. Theoretical aspects of surface reactions. Surf. Sci. 1987, 189–190, 91–105.

73

Norsko, J. K. Chemisorption on metal surfaces. Rep. Prog. Phys. 1990, 53, 1253–1295.

74

Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

75

Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A:Chem. 1997, 115, 421–429.

76

Xin, H. L.; Vojvodic, A.; Voss, J.; Nørskov, J. K.; Abild-Pedersen, F. Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys. Rev. B 2014, 89, 115114.

77

Wu, D. Y.; Dong, C. K.; Zhan, H. B.; Du, X. W. Bond-energy-integrated descriptor for oxygen electrocatalysis of transition metal oxides. J. Phys. Chem. Lett. 2018, 9, 3387–3391.

78

Meadowcroft, D. B. Low-cost oxygen electrode material. Nature 1970, 226, 847–848.

79

Lopez, K.; Park, G.; Sun, H. J.; An, J. C.; Eom, S.; Shim, J. Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1−xO3 (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution. J. Appl. Electrochem. 2015, 45, 313–323.

80

Jung, J. I.; Risch, M.; Park, S.; Kim, M. G.; Nam, G.; Jeong, H. Y.; Shao-Horn, Y.; Cho, J. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energ. Environ. Sci. 2016, 9, 176–183.

81

Bu, Y. F.; Gwon, O.; Nam, G.; Jang, H.; Kim, S.; Zhong, Q.; Cho, J.; Kim, G. A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 2017, 11, 11594–11601.

82

Wang, Q.; Xue, Y. J.; Sun, S. S.; Li, S. H.; Miao, H.; Liu, Z. P. La0.8Sr0.2Co1−xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. Electrochim. Acta 2017, 254, 14–24.

83

Li, P. Z.; Wei, B.; Lü, Z.; Wu, Y. Y.; Zhang, Y. H.; Huang, X. Q. La1.7Sr0.3Co0.5Ni0.5O4+δ layered perovskite as an efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Appl. Surf. Sci. 2019, 464, 494–501.

84

Yuan, R. H.; He, Y.; He, W.; Ni, M.; Leung, M. K. H. Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the a–site deficiency for oxygen reduction and evolution reactions in alkaline media. Appl. Energy 2019, 251, 113406.

85

Gui, L. Q.; Wang, Z. B.; Zhang, K.; He, B. B.; Liu, Y. Z.; Zhou, W.; Xu, J. M.; Wang, Q.; Zhao, L. Oxygen vacancies-rich Ce0.9Gd0.1O2−δ decorated Pr0.5Ba0.5CoO3−δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Appl. Catal. B 2020, 266, 118656.

86

Bian, J. J.; Su, R.; Yao, Y.; Wang, J.; Zhou, J. G.; Li, F.; Wang, Z. L.; Sun, C. W. Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc-air batteries. ACS Appl. Energy Mater. 2019, 2, 923–931.

87

Nie, R. G.; Deng, Y. Q.; Yang, H.; Tan, Y.; Yuan, H. B.; Sagar, R. U. R.; Liang, T. X. Efficient oxygen evolution reaction in SrCo0.8Fe0.2O3−δ perovskite and surface reconstruction for practical zinc-air batteries. Appl. Surf. Sci. 2021, 552, 149509.

88

Zipprich, W.; Waschilewski, S.; Rocholl, F.; Wiemhöfer, H. D. Improved preparation of La1−xMexCoO3−δ (Me = Sr, Ca) and analysis of oxide ion conductivity with ion conducting microcontacts. Solid State Ion. 1997, 101–103, 1015–1023.

89

Ishihara, T.; Guo, L. M.; Miyano, T.; Inoishi, Y.; Kaneko, K.; Ida, S. Mesoporous La0.6Ca0.4CoO3 perovskites with large surface areas as stable air electrodes for rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 7686–7692.

90

Geiser, U.; Beno, M. A.; Schultz, A. J.; Wang, H. H.; Allen, T. J.; Monaghan, M. R.; Williams, J. M. Structural instability in single crystals of the high-Tc superconductor La2−xSrx CuO4. Phys. Rev. B 1987, 35, 6721–6724.

91

Luo, G. P.; Wang, Y. S.; Chen, S. Y.; Heilman, A. K.; Chen, C. L.; Chu, C. W.; Liou, Y.; Ming, N. B. Electrical and magnetic properties of La0.5Sr0.5CoO3 thin films. Appl. Phys. Lett. 2000, 76, 1908–1910.

92

Wu, N. L.; Liu, W. R.; Su, S. J. Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3−x in bifunctional air electrode. Electrochim. Acta 2003, 48, 1567–1571.

93

Wang, X. Y.; Sebastian, P. J.; Smit, M. A.; Yang, H. P.; Gamboa, S. A. Studies on the oxygen reduction catalyst for zinc-air battery electrode. J. Power Sources 2003, 124, 278–284.

94

Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.

95

Weidenkaff, A.; Ebbinghaus, S. G.; Lippert, T. Ln1−xAxCoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn/air batteries. Chem. Mater. 2002, 14, 1797–1805.

96

Vignesh, A.; Prabu, M.; Shanmugam, S. Porous LaCo1−xNixO3−δ nanostructures as an efficient electrocatalyst for water oxidation and for a zinc-air battery. ACS Appl. Mater. Interfaces 2016, 8, 6019–6031.

97

Hu, J.; Wang, L. N.; Shi, L. N.; Huang, H. Oxygen reduction reaction activity of LaMn1−xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim. Acta 2015, 161, 115–123.

98

Lee, D. U.; Park, M. G.; Park, H. W.; Seo, M. H.; Ismayilov, V.; Ahmed, R.; Chen, Z. W. Highly active Co-doped LaMnO3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc-air batteries. Electrochem. Commun. 2015, 60, 38–41.

99

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

100

Grimaud, A.; Carlton, C. E.; Risch, M.; Hong, W. T.; May, K. J.; Shao-Horn, Y. Oxygen evolution activity and stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The influence of transition metal coordination. J. Phys. Chem. C 2013, 117, 25926–25932.

101

Yasin, G.; Ibrahim, S.; Ibraheem, S.; Ali, S.; Iqbal, R.; Kumar, A.; Tabish, M.; Slimani, Y.; Nguyen, T. A.; Xu, H. et al. Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc-air batteries. J. Mater. Chem. A 2021, 9, 18222–18230.

102

Yasin, G.; Ibraheem, S.; Ali, S.; Arif, M.; Ibrahim, S.; Iqbal, R.; Kumar, A.; Tabish, M.; Mushtaq, M. A.; Saad, A. et al. Defects-engineered tailoring of tri-doped interlinked metal-free bifunctional catalyst with lower gibbs free energy of OER/HER intermediates for overall water splitting. Mater. Today Chem. 2022, 23, 100634.

103

Nadeem, M.; Yasin, G.; Arif, M.; Tabassum, H.; Bhatti, M. H.; Mehmood, M.; Yunus, U.; Iqbal, R.; Nguyen, T. A.; Slimani, Y. et al. Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chem. Eng. J. 2021, 409, 128205.

104

Kumar, A.; Yasin, G.; Vashistha, V. K.; Das, D. K.; Rehman, M. U.; Iqbal, R.; Mo, Z. S.; Nguyen, T. A.; Slimani, Y.; Nazir, M. T. et al. Enhancing oxygen reduction reaction performance via CNTs/graphene supported iron protoporphyrin IX: A hybrid nanoarchitecture electrocatalyst. Diam. Relat. Mater. 2021, 113, 108272.

105

Guerret-Piécourt, C.; Le Bouar, Y.; Lolseau, A.; Pascard, H. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 1994, 372, 761–765.

106

Hayashi, T.; Hirono, S.; Tomita, M.; Umemura, S. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 1996, 381, 772–774.

107

Xu, N. N.; Zhang, Y. X.; Wang, Y. D.; Wang, M.; Su, T. S.; Coco, C. A.; Qiao, J. L.; Zhou, X. D. Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries. Appl. Energy 2020, 279, 115876.

108

Xu, N. N.; Zhang, Y. X.; Wang, M.; Fan, X. J.; Zhang, T.; Peng, L. W.; Zhou, X. D.; Qiao, J. L. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy 2019, 65, 104021.

109

Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Mater. Chem. Front. 2019, 3, 520–531.

110

Iqbal, R.; Ali, S.; Yasin, G.; Ibraheem, S.; Tabish, M.; Hamza, M.; Chen, H. N.; Xu, H.; Zeng, J.; Zhao, W. A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction. Chem. Eng. J. 2022, 430, 132642.

111

Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.

112

Nadeem, M.; Yasin, G.; Bhatti, M. H.; Mehmood, M.; Arif, M.; Dai, L. M. Pt-M bimetallic nanoparticles (M = Ni, Cu, Er) supported on metal organic framework-derived N-doped nanostructured carbon for hydrogen evolution and oxygen evolution reaction. J. Power Sources 2018, 402, 34–42.

113

Zhang, E. H.; Xie, Y.; Ci, S. Q.; Jia, J. C.; Cai, P. W.; Yi, L. C.; Wen, Z. H. Multifunctional high-activity and robust electrocatalyst derived from metal-organic frameworks. J. Mater. Chem. A 2016, 4, 17288–17298.

114

Zeng, M.; Liu, Y. L.; Zhao, F. P.; Nie, K. Q.; Han, N.; Wang, X. X.; Huang, W. J.; Song, X. N.; Zhong, J.; Li, Y. G. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries. Adv. Funct. Mater. 2016, 26, 4397–4404.

115

Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 2017, 27, 1606497.

116
Guo, X. M.; Zhang, W.; Shi, J.; Duan, M. T.; Liu, S. J.; Zhang, J. H.; Liu, Y. J.; Xiong, S. L.; Kong, Q. H. A channel-confined strategy for synthesizing CoN-CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries. Nano Res., 2022, 15, 2092–2103. DOI: 10.1007/s12274-021-3835-8 https://doi.org/10.1007/s12274-021-3835-8
117

Hao, Y. C.; Lu, Z. Y.; Zhang, G. X.; Chang, Z.; Luo, L.; Sun, X. M. Cobalt-embedded nitrogen-doped carbon nanotubes as high-performance bifunctional oxygen catalysts. Energy Technol. 2017, 5, 1265–1271.

118

Wang, S. G.; Qin, J. W.; Meng, T.; Cao, M. H. Metal–organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 2017, 39, 626–638.

119

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

120

Gao, L. C.; Chen, S.; Cai, R. S.; Zhao, Q. S.; Zhao, X. L.; Yang, D. J. DUT-58 (Co) derived synthesis of Co clusters as efficient oxygen reduction electrocatalyst for zinc-air battery. Glob. Chall. 2018, 2, 1700086.

121

Wang, T. T.; Kou, Z. K.; Mu, S. C.; Liu, J. P.; He, D. P.; Amiinu, I. S.; Meng, W.; Zhou, K.; Luo, Z. X.; Chaemchuen, S. et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1705048.

122

Yang, L.; Lv, Y. L.; Cao, D. P. Co, N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2018, 6, 3926–3932.

123

Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

124

Han, H. J.; Chao, S. J.; Bai, Z. Y.; Wang, X. B.; Yang, X. L.; Qiao, J. L.; Chen, Z. W.; Yang, L. Metal-organic-framework-derived CO nanoparticles deposited on N-doped bimodal mesoporous carbon nanorods as efficient bifunctional catalysts for rechargeable zinc-air batteries. ChemElectroChem 2018, 5, 1868–1873.

125

Zang, W. J.; Sumboja, A.; Ma, Y. Y.; Zhang, H.; Wu, Y.; Wu, S. S.; Wu, H. J.; Liu, Z. L.; Guan, C.; Wang, J. et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 2018, 8, 8961–8969.

126

Yang, Y.; Wang, C. L.; Gao, S. Q.; Mao, K. T.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Hu, L.; Chen, Q. W. Incorporation of Cu-Nx cofactors into graphene encapsulated Co as biomimetic electrocatalysts for efficient oxygen reduction. Nanoscale 2018, 10, 21076–21086.

127

Ji, D. X.; Fan, L.; Li, L. L.; Mao, N.; Qin, X. H.; Peng, S. J.; Ramakrishna, S. Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon 2019, 142, 379–387.

128

Liu, G. H.; Li, J. D.; Fu, J.; Jiang, G. P.; Lui, G.; Luo, D.; Deng, Y. P.; Zhang, J.; Cano, Z. P.; Yu, A. P. et al. An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 2019, 31, 1806761.

129

Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698.

130

Zhou, B. J.; Liu, Y. Y.; Wu, X. L.; Liu, H.; Liu, T.; Wang, Y.; Mehdi, S.; Jiang, J. C.; Li, B. J. Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries. Nano Res. 2022, 15, 1415–1423.

131

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

132

Yang, H. Z.; Wang, B.; Li, H. Y.; Ni, B.; Wang, K.; Zhang, Q.; Wang, X. Trimetallic sulfide mesoporous nanospheres as superior electrocatalysts for rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1801839.

133

Li, Z. T.; Yang, T. T.; Zhao, W. N.; Xu, T.; Wei, L. Q.; Feng, J. Z.; Yang, X. J.; Ren, H.; Wu, M. B. Structural modulation of Co catalyzed carbon nanotubes with Cu-Co bimetal active center to inspire oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 3937–3945.

134

Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem., Int. Ed. 2018, 57, 1856–1862.

135

Cai, P. W.; Hong, Y.; Ci, S. Q.; Wen, Z. H. In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries. Nanoscale 2016, 8, 20048–20055.

136

Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In Situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

137

Liu, Y. L.; Chen, F. J.; Ye, W.; Zeng, M.; Han, N.; Zhao, F. P.; Wang, X. X.; Li, Y. G. High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal–air batteries. Adv. Funct. Mater. 2017, 27, 1606034.

138

Aiyappa, H. B.; Bhange, S. N.; Sivasankaran, V. P.; Kurungot, S. Single cell fabrication towards the realistic evaluation of a CNT-strung ZIF-derived electrocatalyst as a cathode material in alkaline fuel cells and metal-air batteries. ChemElectroChem 2017, 4, 2928–2933.

139

Gao, T. T.; Jin, Z. Y.; Zhang, Y. J.; Tan, G. Q.; Yuan, H. Y.; Xiao, D. Coupling cobalt-iron bimetallic nitrides and N-doped multi-walled carbon nanotubes as high-performance bifunctional catalysts for oxygen evolution and reduction reaction. Electrochim. Acta 2017, 258, 51–60.

140

He, G. J.; Han, X. Y.; Moss, B.; Weng, Z.; Gadipelli, S.; Lai, F. L.; Kafizas, A. G.; Brett, D. J. L.; Guo, Z. X.; Wang, H. L. et al. Solid solution nitride/carbon nanotube hybrids enhance electrocatalysis of oxygen in zinc-air batteries. Energy Storage Mater. 2018, 15, 380–387.

141

Guan, C.; Sumboja, A.; Zang, W. J.; Qian, Y. H.; Zhang, H.; Liu, X. M.; Liu, Z. L.; Zhao, D.; Pennycook, S. J.; Wang, J. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Stor. Mater. 2019, 16, 243–250.

142

Chen, L. L.; Zhang, Y. L.; Liu, X. J.; Long, L.; Wang, S. Y.; Xu, X. L.; Liu, M. C.; Yang, W. X.; Jia, J. B. Bifunctional oxygen electrodes of homogeneous Co4N nanocrystals@N-doped carbon hybrids for rechargeable Zn-air batteries. Carbon 2019, 151, 10–17.

143

Cai, J. N.; Zhang, X. F.; Yang, M. X.; Shi, Y. D.; Liu, W. K.; Lin, S. Constructing Co@WC1−x heterostructure on N-doped carbon nanotubes as an efficient bifunctional electrocatalyst for zinc-air batteries. J. Power Sources 2021, 485, 229251.

144

Huang, K. X.; Yang, Z. Y.; Liu, L.; Yang, X.; Fan, Y. J.; Sun, M. L.; Liu, C. Z.; Chen, W.; Yang, J. A dual ligand coordination strategy for synthesizing drum-like Co, N co-doped porous carbon electrocatalyst towards superior oxygen reduction and zinc-air batteries. Int. J. Hydrogen Energy 2021, 46, 24472–24483.

145

Xiao, X.; Li, X. H.; Yu, G. Q.; Wang, J. X.; Yan, G. C.; Wang, Z. X.; Guo, H. J. FeCox alloy nanoparticles encapsulated in three-dimensionally N-doped porous carbon/multiwalled carbon nanotubes composites as bifunctional electrocatalyst for zinc-air battery. J. Power Sources 2019, 438, 227019.

146

Rao, P.; Cui, P.; Yang, L.; Wang, M. S.; Wang, S.; Cai, H.; Wang, Y.; Zhao, X. S.; Wilkinson, D. P.; Zhang, J. J. Surface plasma-etching treatment of cobalt nanoparticles-embedded honeysuckle-like nitrogen-doped carbon nanotubes to produce high-performance catalysts for rechargeable zinc-air batteries. J. Power Sources 2020, 453, 227858.

147

Xiao, C. X.; Luo, J. J.; Tan, M. Y.; Xiao, Y. Y.; Gao, B. F.; Zheng, Y.; Lin, B. Z. Co/CoNx decorated nitrogen-doped porous carbon derived from melamine sponge as highly active oxygen electrocatalysts for zinc-air batteries. J. Power Sources 2020, 453, 227900.

148

Niu, H. J.; Chen, S. S.; Feng, J. J.; Zhang, L.; Wang, A. J. Assembled hollow spheres with CoFe alloyed nanocrystals encapsulated in N, P-doped carbon nanovesicles: An ultra-stable bifunctional oxygen catalyst for rechargeable Zn-air battery. J. Power Sources 2020, 475, 228594.

149

Tan, M. Y.; Xiao, Y. Y.; Xi, W. H.; Lin, X. F.; Gao, B. F.; Chen, Y. L.; Zheng, Y.; Lin, B. Z. Cobalt-nanoparticle impregnated nitrogen-doped porous carbon derived from Schiff-base polymer as excellent bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Power Sources 2021, 490, 229570.

150

Jin, Q. Y.; Ren, B. W.; Chen, J. P.; Cui, H.; Wang, C. X. A facile method to conduct 3D self-supporting Co-FeCo/N-doped graphene-like carbon bifunctional electrocatalysts for flexible solid-state zinc air battery. Appl. Catal. B 2019, 256, 117887.

151

Zou, H. Y.; Li, G.; Duan, L. L.; Kou, Z. K.; Wang, J. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. Appl. Catal. B 2019, 259, 118100.

152

Qin, J. Y.; Liu, Z. W.; Wu, D. Y.; Yang, J. Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co–N–C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Appl. Catal. B 2020, 278, 119300.

153

Peng, W.; Yang, X. X.; Mao, L. C.; Jin, J. H.; Yang, S. L.; Zhang, J. J.; Li, G. ZIF-67-derived Co nanoparticles anchored in N doped hollow carbon nanofibers as bifunctional oxygen electrocatalysts. Chem. Eng. J. 2021, 407, 127157.

154

Wei, H. L.; Tan, A. D.; Hu, S. Z.; Piao, J. H.; Fu, Z. Y. Efficient spinel iron-cobalt oxide/nitrogen-doped ordered mesoporous carbon catalyst for rechargeable zinc-air batteries. Chin. J. Catal. 2021, 42, 1451–1458.

155

Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099.

156

Peng, X. M.; Wei, L. C.; Liu, Y. Y.; Cen, T. L.; Ye, Z. F.; Zhu, Z. G.; Ni, Z. T.; Yuan, D. S. Cobalt nanoparticles embedded in N-doped carbon nanotubes on reduced graphene oxide as efficient oxygen catalysts for Zn-air batteries. Energy Fuels 2020, 34, 8931–8938.

157

Luo, X.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Gu, W. L.; Zhu, C. Z. Hexamine-coordination-framework-derived Co-N-doped carbon nanosheets for robust oxygen reduction reaction. ACS Sustain. Chem. Eng. 2020, 8, 9721–9730.

158

Dong, F.; Liu, C.; Wu, M. J.; Guo, J. N.; Li, K. X.; Qiao, J. L. Hierarchical porous carbon derived from coal tar pitch containing discrete Co-Nx-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Sustain. Chem. Eng. 2019, 7, 8587–8596.

159

Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163–173.

160

Qiu, L. Z.; Han, X. P.; Lu, Q.; Zhao, J.; Wang, Y.; Chen, Z. L.; Zhong, C.; Hu, W. B.; Deng, Y. D. Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Inorg. Chem. Front. 2019, 6, 3554–3561.

161

Qi, Y. G.; Yuan, S.; Cui, L. L.; Wang, Z. Z.; He, X. Q.; Zhang, W.; Asefa, T. (Fe, Co)/N-doped multi-walled carbon nanotubes as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. ChemCatChem 2020, 13, 1023–1033.

162

Chen, Y. S.; Zhang, W. H.; Zhu, Z. Y.; Zhang, L. L.; Yang, J. Y.; Chen, H. H.; Zheng, B.; Li, S.; Zhang, W. N.; Wu, J. S. et al. Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc-air batteries. J. Mater. Chem. A 2020, 8, 7184–7191.

163

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. , Int. Ed. 2013, 52, 371–375.

164

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

165

Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

166
Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.https://doi.org/10.1002/adma.201808267
167

Xu, N. N.; Wilson, J. A.; Wang, Y. D.; Su, T. S.; Wei, Y. N.; Qiao, J. L.; Zhou, X. D.; Zhang, Y. X.; Sun, S. H. Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. Appl. Catal. B 2020, 272, 118953.

168

Xu, N. N.; Qiao, J. L. Recent progress in bifunctional catalysts for zinc-air batteries. J. Electrochem. 2020, 26, 531–562.

169

Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342–2348.

170

Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlogl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718–7725.

171

Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

172

Du, G. J.; Liu, X. G.; Zong, Y.; Hor, T. S. A.; Yu, A. S.; Liu, Z. L. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries. Nanoscale 2013, 5, 4657–4661.

173

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

174

Liu, X. E.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G. et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 2015, 25, 5799–5808.

175

Fu, J.; Hassan, F. M.; Li, J. D.; Lee, D. U.; Ghannoum, A. R.; Lui, G.; Hoque, A.; Chen, Z. W. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array. Adv. Mater. 2016, 28, 6421–6428.

176

Xu, N. N.; Liu, Y. Y.; Zhang, X.; Li, X. M.; Li, A. J.; Qiao, J. L.; Zhang, J. J. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. Sci. Rep. 2016, 6, 33590.

177

He, Y.; Zhang, J. F.; He, G. W.; Han, X. P.; Zheng, X. R.; Zhong, C.; Hu, W. B.; Deng, Y. D. Ultrathin Co3O4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries. Nanoscale 2017, 9, 8623–8630.

178

Li, X. M.; Xu, N. N.; Li, H. R.; Wang, M.; Zhang, L.; Qiao, J. L. 3D hollow sphere Co3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery. Green Energy Environ. 2017, 2, 316–328.

179

Song, Z. S.; Han, X. P.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B.; Zhong, C. Clarifying the controversial catalytic performance of Co(OH)2 and Co3O4 for oxygen reduction/evolution reactions toward efficient Zn-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 22694–22703.

180

Zeng, S.; Chen, H. Y.; Wang, H.; Tong, X.; Chen, M. H.; Di, J. T.; Li, Q. W. Crosslinked carbon nanotube aerogel films decorated with cobalt oxides for flexible rechargeable Zn-air batteries. Small 2017, 13, 1700518.

181

Hao, Y. C.; Xu, Y. Q.; Han, N. N.; Liu, J. F.; Sun, X. M. Boosting the bifunctional electrocatalytic oxygen activities of CoOx nanoarrays with a porous N-doped carbon coating and their application in Zn-air batteries. J. Mater. Chem. A 2017, 5, 17804–17810.

182

Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.

183

Wang, C. W.; Zhao, Z.; Li, X. F.; Yan, R.; Wang, J.; Li, A. N.; Duan, X. Y.; Wang, J. Y.; Liu, Y.; Wang, J. Z. Three-dimensional framework of graphene nanomeshes shell/Co3O4 synthesized as superior bifunctional electrocatalyst for zinc-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 41273–41283.

184

Ren, J. T.; Yuan, G. G.; Weng, C. C.; Yuan, Z. Y. Rationally designed Co3O4-C nanowire arrays on Ni foam derived from metal organic framework as reversible oxygen evolution electrodes with enhanced performance for Zn-air batteries. ACS Sustain. Chem. Eng. 2017, 6, 707–718.

185

Li, X. M.; Dong, F.; Xu, N. N.; Zhang, T.; Li, K. X.; Qiao, J. L. Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2018, 10, 15591–15601.

186

Nie, Q.; Cai, Y. X.; Xu, N. N.; Peng, L. W.; Qiao, J. L. Highly stabilized zinc-air batteries based on nanostructured Co3O4 composites as efficient bifunctional electrocatalyst. ChemElectroChem 2018, 5, 1976–1984.

187

Ma, L. T.; Chen, S. M.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Zhi, C. Y. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12, 8597–8605.

188

Li, M.; Luo, F.; Zhang, Q.; Yang, Z. H.; Xu, Z. K. Atomic layer Co3O4-x nanosheets as efficient and stable electrocatalyst for rechargeable zinc-air batteries. J. Catal. 2020, 381, 395–401.

189

Yu, N. F.; Wu, C.; Huang, W.; Chen, Y. H.; Ruan, D. Q.; Bao, K. L.; Chen, H.; Zhang, Y.; Zhu, Y. S.; Huang, Q. H. et al. Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy 2020, 77, 105200.

190

Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. G.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv. Mater. 2019, 31, 1807468.

191

Zhong, Y. T.; Pan, Z. H.; Wang, X. S.; Yang, J.; Qiu, Y. C.; Xu, S. Y.; Lu, Y. T.; Huang, Q. M.; Li, W. S. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 2019, 6, 1802243.

192

Bera, R. K.; Park, H.; Ryoo, R. Co3O4 nanosheets on zeolite-templated carbon as an efficient oxygen electrocatalyst for a zinc-air battery. J. Mater. Chem. A 2019, 7, 9988–9996.

193

Ling, Y.; Li, M.; Qu, K. G.; Yang, Z. H. Electronically interacted Co3O4/WS2 as superior oxygen electrode for rechargeable zinc-air batteries. Chem. Commun. 2020, 56, 15193–15196.

194

Lee, D. U.; Scott, J.; Park, H. W.; Abureden, S.; Choi, J. Y.; Chen, Z. W. Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc-air battery applications. Electrochem. Commun. 2014, 43, 109–112.

195

Park, M. G.; Lee, D. U.; Seo, M. H.; Cano, Z. P.; Chen, Z. W. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries. Small 2016, 12, 2707–2714.

196

Yu, Z.; Bai, Y.; Zhang, S. M.; Liu, Y. X.; Zhang, N. Q.; Sun, K. N. Metal-organic framework-derived Zn0.975Co0.025S/CoS2 embedded in N, S-codoped carbon nanotube/nanopolyhedra as an efficient electrocatalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 10441–10446.

197

Yu, M. H.; Wang, Z. K.; Hou, C.; Wang, Z. L.; Liang, C. L.; Zhao, C. Y.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868.

198

Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Ni, M. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Appl. Catal. B 2019, 241, 104–112.

199

Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595.

200

Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Liu, M. L.; Shao, Z. P.; Ni, M. Co3O4 nanosheets as active material for hybrid Zn batteries. Small 2018, 14, 1800225.

201

Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Ni, M. Investigation on the electrode design of hybrid Zn-Co3O4/air batteries for performance improvements. Electrochim. Acta 2018, 283, 1028–1036.

202

Qu, S. X.; Song, Z. S.; Liu, J.; Li, Y. B.; Kou, Y.; Ma, C.; Han, X. P.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B. et al. Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics. Nano Energy 2017, 39, 101–110.

203

Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y. D.; Han, X. P.; Wu, T. P.; Hu, W. B. et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater. 2017, 7, 1700779.

204

Chen, X.; Zhong, C.; Liu, B.; Liu, Z.; Bi, X. X.; Zhao, N. Q.; Han, X. P.; Deng, Y. D.; Lu, J.; Hu, W. B. Atomic layer Co3O4 nanosheets: The key to knittable Zn-air batteries. Small 2018, 14, 1702987.

205

Singh, S. K.; Dhavale, V. M.; Kurungot, S. Surface-tuned Co3O4 nanoparticles dispersed on nitrogen-doped graphene as an efficient cathode electrocatalyst for mechanical rechargeable zinc-air battery application. ACS Appl. Mater. Interfaces 2015, 7, 21138–21149.

206

Lee, D. U.; Park, M. G.; Park, H. W.; Seo, M. H.; Wang, X. L.; Chen, Z. W. Highly active and durable nanocrystal-decorated bifunctional electrocatalyst for rechargeable zinc-air batteries. ChemSusChem 2015, 8, 3129–3138.

207

Wang, Y. Q.; Yin, X.; Shen, H. B.; Jiang, H.; Yu, J. W.; Zhang, Y. F.; Li, D. W.; Li, W. Z.; Li, J. Co3O4@g-C3N4 supported on N-doped graphene as effective electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 2018, 43, 20687–20695.

208

Li, B.; Ge, X. M.; Goh, F. W. T.; Hor, T. S. A.; Geng, D. S.; Du, G. J.; Liu, Z. L.; Zhang, J.; Liu, X. G.; Zong, Y. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale 2015, 7, 1830–1838.

209

Lee, D.; Kim, H. W.; Kim, J. M.; Kim, K. H.; Lee, S. Y. Flexible/rechargeable Zn-air batteries based on multifunctional heteronanomat architecture. ACS Appl. Mater. Interfaces 2018, 10, 22210–22217.

210

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

211

Zhan, Y.; Xu, C. H.; Lu, M. H.; Liu, Z. L.; Lee, J. Y. Mn and Co co-substituted Fe3O4 nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution. J. Mater. Chem. A 2014, 2, 16217–16223.

212

Prabu, M.; Ketpang, K.; Shanmugam, S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 2014, 6, 3173–3181.

213

Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

214

Liu, X. E.; Park, M.; Kim, M. G.; Gupta, S.; Wang, X. J.; Wu, G.; Cho, J. High-performance non-spinel cobalt-manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc-air batteries. Nano Energy 2016, 20, 315–325.

215

Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.

216

Yang, J.; Fujigaya, T.; Nakashima, N. Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions. Sci. Rep. 2017, 7, 45384.

217

Kuang, M.; Wang, Q. H.; Ge, H. T.; Han, P.; Gu, Z. X.; Al-Enizi, A. M.; Zheng, G. F. CuCoOx/FeOOH core–shell nanowires as an efficient bifunctional oxygen evolution and reduction catalyst. ACS Energy Lett. 2017, 2, 2498–2505.

218

Qaseem, A.; Chen, F. Y.; Qiu, C. Z.; Mahmoudi, A.; Wu, X. Q.; Wang, X. L,; Johnston, R. L. Reduced graphene oxide decorated with manganese cobalt oxide as multifunctional material for mechanically rechargeable and hybrid zinc-air batteries. Part. Part. Syst. Charact. 2017, 34, 1700097.

219

Wei, L.; Karahan, H. E.; Zhai, S. L.; Liu, H. W.; Chen, X. C.; Zhou, Z.; Lei, Y. J.; Liu, Z. W.; Chen, Y. Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater. 2017, 29, 1701410.

220

Lu, Y. T.; Chien, Y. J.; Liu, C. F.; You, T. H.; Hu, C. C. Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M0.1Ni0.9Co2O4 (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc-air batteries. J. Mater. Chem. A 2017, 5, 21016–21026.

221

Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N–Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.

222

Zhang, Y. Q.; Li, M.; Hua, B.; Wang, Y.; Sun, Y. F.; Luo, J. L. A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B 2018, 236, 413–419.

223

Zou, Y. H.; Chang, G. J.; Jia, Y.; Cai, R. S.; Chen, S.; Xia, Y. Z.; Theis, W.; Yang, D. J.; Yao, X. D. Generating lithium vacancies through delithiation of Li(NixCoyMnz)O2 towards bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy Storage Mater. 2018, 15, 202–208.

224

Xiao, X.; Hu, X. Y.; Liang, Y.; Zhang, G. L.; Wang, X. Y.; Yan, Y. C.; Li, X. H.; Yan, G. C.; Wang, J. X. Anchoring NiCo2O4 nanowhiskers in biomass-derived porous carbon as superior oxygen electrocatalyst for rechargeable Zn-air battery. J. Power Sources 2020, 476, 228684.

225

Zhang, Z. M.; Sun, H. N.; Li, J. F.; Shi, Z. H.; Fan, M. H.; Bian, H. Q.; Wang, T.; Gao, D. Q. S-doped CoMn2O4 with more high valence metallic cations and oxygen defects for zinc-air batteries. J. Power Sources 2021, 491, 229584.

226

Bian, J. J.; Cheng, X. P.; Meng, X. Y.; Wang, J.; Zhou, J. G.; Li, S. Q.; Zhang, Y. F.; Sun, C. W. Nitrogen-doped NiCo2O4 microsphere as an efficient catalyst for flexible rechargeable zinc-air batteries and self-charging power system. ACS Appl. Energy Mater. 2019, 2, 2296–2304.

227

Zhao, J.; He, Y.; Chen, Z. L.; Zheng, X. R.; Han, X. P.; Rao, D. W.; Zhong, C.; Hu, W. B.; Deng, Y. D. Engineering the surface metal active sites of nickel cobalt oxide nanoplates toward enhanced oxygen electrocatalysis for Zn-air battery. ACS Appl. Mater. Interfaces 2018, 11, 4915–4921.

228

Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High electrochemical performance of monodisperse NiCo2O2 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 981–988.

229

Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347–351.

230

Zhang, L. X.; Zhang, S. L.; Zhang, K. J.; Xu, G. J.; He, X.; Dong, S. M.; Liu, Z. H.; Huang, C. S.; Gu, L.; Cui, G. L. Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries. Chem. Commun. 2013, 49, 3540–3542.

231

Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.

232

Ma, N.; Jia, Y.; Yang, X. F.; She, X. L.; Zhang, L. Z.; Peng, Z.; Yao, X. D.; Yang, D. J. Seaweed biomass derived (Ni, Co)/CNT nanoaerogels: Efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. J. Mater. Chem. A 2016, 4, 6376–6384.

233

Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728.

234

Menezes, P. W.; Indra, A.; Sahraie, N. R.; Bergmann, A.; Strasser, P.; Driess, M. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. ChemSusChem 2015, 8, 164–171.

235

Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

236

Wei, C.; Feng, Z. X.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 2017, 29, 1606800.

237

Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13291–13296.

238

Calvillo, L.; Carraro, F.; Vozniuk, O.; Celorrio, V.; Nodari, L.; Russell, A. E.; Debellis, D.; Fermin, D.; Cavani, F.; Agnoli, S. et al. Insights into the durability of Co-Fe spinel oxygen evolution electrocatalysts via operando studies of the catalyst structure. J. Mater. Chem. A 2018, 6, 7034–7041.

239

Vante, N. A.; Tributsch, H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 1986, 323, 431–432.

240

Trapp, V.; Christensen, P.; Hamnett, A. New catalysts for oxygen reduction based on transition-metal sulfides. J. Chem. Soc. Faraday Trans. 1996, 92, 4311–4319.

241

Behret, H.; Binder, H.; Sandstede, G. Electrocatalytic oxygen reduction with thiospinels and other sulphides of transition metals. Electrochim. Acta 1975, 20, 111–117.

242

Wang, Z. L.; Xiao, S.; An, Y. M.; Long, X.; Zheng, X. L.; Lu, X. H.; Tong, Y. X.; Yang, S. H. Co(II)1−xCo(0)x/3Mn(III)2x/3S nanoparticles supported on B/N-codoped mesoporous nanocarbon as a bifunctional electrocatalyst of oxygen reduction/evolution for high-performance zinc-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 13348–13359.

243

Han, X. P.; Wu, X. Y.; Zhong, C.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B. NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 2017, 31, 541–550.

244

Wu, X. Y.; Han, X. P.; Ma, X. Y.; Zhang, W.; Deng, Y. D.; Zhong, C.; Hu, W. B. Morphology-controllable synthesis of Zn-Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc-air batteries and water electrolysis. ACS Appl. Mater. Interfaces 2017, 9, 12574–12583.

245

Ni, W. P.; Liu, S. M.; Du, C.; Fei, Y. Q.; He, Y. D.; Ma, X. Y.; Lu, L. J.; Deng, Y. Q. Ionic liquids as phosphorus sources for preparation of cobalt phosphide and multiple heteroatom-doped mesoporous carbon with high electrocatalytic activity toward oxygen reduction reaction. Int. J. Hydrogen Energy 2017, 42, 19019–19027.

246

Ahn, S. H.; Manthiram, A. Cobalt phosphide coupled with heteroatom-doped nanocarbon hybrid electroctalysts for efficient, long-life rechargeable zinc-air batteries. Small 2017, 13, 1702068.

247

Cheng, Y. F.; Liao, F.; Shen, W.; Liu, L. B.; Jiang, B. B.; Li, Y. Q.; Shao, M. W. Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc-air batteries. Nanoscale 2017, 9, 18977–18982.

248

Niu, W. H.; Li, Z.; Marcus, K.; Zhou, L.; Li, Y. L.; Ye, R. Q.; Liang, K.; Yang, Y. Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries. Adv. Energy Mater. 2018, 8, 1701642.

249

Li, Y.; Zhou, W.; Dong, J. C.; Luo, Y.; An, P. F.; Liu, J.; Wu, X.; Xu, G. L.; Zhang, H. B.; Zhang, J. Interface engineered in situ anchoring of Co9S8 nanoparticles into a multiple doped carbon matrix: Highly efficient zinc-air batteries. Nanoscale 2018, 10, 2649–2657.

250

Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

251

Liu, W. W.; Zhang, J.; Bai, Z. Y.; Jiang, G. P.; Li, M.; Feng, K.; Yang, L.; Ding, Y. L.; Yu, T. W.; Chen, Z. W. et al. Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn-air battery. Adv. Funct. Mater. 2018, 28, 1706675.

252

Zou, H. Y.; He, B. W.; Kuang, P. Y.; Yu, J. G.; Fan, K. Metal–organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2018, 10, 22311–22319.

253

Li, Y.; Zhou, Y. Z.; Wen, H. J.; Yang, J.; Maouche, C.; Liu, Q. Q.; Wu, Y. Y.; Cheng, C.; Zhu, J.; Cheng, X. N. N, S-atom-coordinated Co9S8 trinary dopants within a porous graphene framework as efficient catalysts for oxygen reduction/evolution reactions. Dalton Trans. 2018, 47, 14992–15001.

254

Fu, G. T.; Wang, J.; Chen, Y. F.; Liu, Y.; Tang, Y. W.; Goodenough, J. B.; Lee, J. M. Exploring indium-based ternary thiospinel as conceivable high-potential air-cathode for rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1802263.

255

Ding, J. T.; Ji, S.; Wang, H.; Pollet, B. G.; Wang, R. F. Mesoporous CoS/N-doped carbon as HER and ORR bifunctional electrocatalyst for water electrolyzers and zinc-air batteries. ChemCatChem 2019, 11, 1026–1032.

256

Fang, W. G.; Hu, H. B.; Jiang, T. T.; Li, G.; Wu, M. Z. N- and S-doped porous carbon decorated with in-situ synthesized Co–Ni bimetallic sulfides particles: A cathode catalyst of rechargeable Zn-air batteries. Carbon 2019, 146, 476–485.

257

Liang, Y. X.; Gong, Q. J.; Sun, X. L.; Xu, N. N.; Gong, P. N.; Qiao, J. L. Rational fabrication of thin-layered NiCo2S4 loaded graphene as bifunctional non-oxide catalyst for rechargeable zinc-air batteries. Electrochim. Acta 2020, 342, 136108.

258

Ramakrishnan, S.; Balamurugan, J.; Vinothkannan, M.; Kim, A. R.; Sengodan, S.; Yoo, D. J. Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries. Appl. Catal. B 2020, 279, 119381.

259

Li, W. Q.; Li, Y. H.; Fu, H. Q.; Yang, G. X.; Zhang, Q.; Chen, S. Z.; Peng, F. Phosphorus doped Co9S8@CS as an excellent air-electrode catalyst for zinc-air batteries. Chem. Eng. J. 2020, 381, 122683.

260

Gao, L.; Chang, S. M.; Zhang, Z. Y. High-quality CoFeP nanocrystal/N, P dual-doped carbon composite as a novel bifunctional electrocatalyst for rechargeable Zn-air battery. ACS Appl. Mater. Interfaces 2021, 13, 22282–22291.

261

Gao, J. C.; Wang, J. M.; Zhou, L. J.; Cai, X. Y.; Zhan, D.; Hou, M. Z.; Lai, L. F. Co2P@N, P-codoped carbon nanofiber as a free-standing air electrode for Zn-air batteries: Synergy effects of CoNx satellite shells. ACS Appl. Mater. Interfaces 2019, 11, 10364–10372.

262

Cai, Z. C.; Yamada, I.; Yagi, S. ZIF-derived Co9−xNixS8 nanoparticles immobilized on N-doped carbons as efficient catalysts for high-performance zinc-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 5847–5856.

263

Chen, J. P.; Ni, B. Q.; Hu, J. G.; Wu, Z. X.; Jin, W. Defective graphene aerogel-supported Bi-CoP nanoparticles as a high-potential air cathode for rechargeable Zn-air batteries. J. Mater. Chem. A 2019, 7, 22507–22513.

264

Zhang, H. M.; Hu, C. Y.; Ji, M. W.; Wang, M. J.; Yu, J. L.; Liu, H. C.; Zhu, C. Z.; Xu, J. Co/Co9S8@carbon nanotubes on a carbon sheet: Facile controlled synthesis, and application to electrocatalysis in oxygen reduction/oxygen evolution reactions, and to a rechargeable Zn-air battery. Inorg. Chem. Front. 2021, 8, 368–375.

265

Han, H. J.; Bai, Z. Y.; Zhang, T.; Wang, X. B.; Yang, X. L.; Ma, X. M.; Zhang, Y. P.; Yang, L.; Lu, J. Hierarchical design and development of nanostructured trifunctional catalysts for electrochemical oxygen and hydrogen reactions. Nano Energy 2019, 56, 724–732.

266

Liu, Q.; Jin, J. T.; Zhang, J. Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002–5008.

267

Ganesan, P.; Prabu, M.; Sanetuntikul, J.; Shanmugam, S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 2015, 5, 3625–3637.

268

Von Känel, H.; Gantert, L.; Hauger, R.; Wachter, P. Photoelectrochemical production of hydrogen from p-type transition metal phosphides. Int. J. Hydrogen Energy 1985, 10, 821–827.

269

Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 2015, 15, 7616–7620.

270

Hao, Y. C.; Xu, Y. Q.; Liu, W.; Sun, X. M. Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Mater. Horiz. 2018, 5, 108–115.

271

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

272

Bai, Z. Y.; Li, S. S.; Fu, J.; Zhang, Q.; Chang, F. F.; Yang, L.; Lu, J.; Chen, Z. W. Metal–organic framework-derived nickel cobalt oxysulfide nanocages as trifunctional electrocatalysts for high efficiency power to hydrogen. Nano Energy 2019, 58, 680–686.

273

Song, X. K.; Guo, L. L.; Liao, X. M.; Liu, J.; Sun, J. H.; Li, X. P. Hollow carbon nanopolyhedra for enhanced electrocatalysis via confined hierarchical porosity. Small 2017, 13, 1700238.

274

Yu, Q. M.; Wu, C. X.; Xu, J. X.; Zhao, Y.; Zhang, J. S.; Guan, L. H. Nest-like assembly of the doped single-walled carbon nanotubes with unique mesopores as ultrastable catalysts for high power density Zn-air battery. Carbon 2018, 128, 46–53.

275

Ding, J. T.; Ji, S.; Wang, H.; Gai, H. J.; Liu, F. S.; Pollet, B. G.; Wang, R. F. N-doped porous transition metal-based carbon nanosheet networks as a multifunctional electrocatalyst for rechargeable zinc-air batteries. Chem. Commun. 2019, 55, 2924–2927.

276

Fu, K.; Wang, Y.; Mao, L. C.; Yang, X. X.; Jin, J. H.; Yang, S. L.; Li, G. Strongly coupled Co, N co-doped carbon nanotubes/graphene-like carbon nanosheets as efficient oxygen reduction electrocatalysts for primary zinc-air battery. Chem. Eng. J. 2018, 351, 94–102.

277

He, G. W.; Zhang, W.; Deng, Y. D.; Zhong, C.; Hu, W. B.; Han, X. P. Engineering pyrite-type bimetallic Ni-doped CoS2 nanoneedle arrays over a wide compositional range for enhanced oxygen and hydrogen electrocatalysis with flexible property. Catalysts 2017, 7, 366.

278

Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

279

Chen, B. H.; He, X. B.; Yin, F. X.; Wang, H.; Liu, D. J.; Shi, R. X.; Chen, J. N.; Yin, H. W. MO-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 2017, 27, 1700795.

280

Wang, Z. J.; Lu, Y. Z.; Yan, Y.; Larissa, T. Y. P.; Zhang, X.; Wuu, D.; Zhang, H.; Yang, Y. H.; Wang, X. Core–shell carbon materials derived from metal–organic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy 2016, 30, 368–378.

281

Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H. Z.; Biradar, A. V.; Peng, D. L.; Zboril, R.; Varma, R. S. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590.

282

Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971.

Nano Research
Pages 5038-5063
Cite this article:
Chen D, Pan L, Pei P, et al. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Research, 2022, 15(6): 5038-5063. https://doi.org/10.1007/s12274-022-4154-4
Topics:

1295

Views

36

Crossref

39

Web of Science

38

Scopus

3

CSCD

Altmetrics

Received: 19 November 2021
Revised: 02 January 2022
Accepted: 12 January 2022
Published: 28 March 2022
© Tsinghua University Press 2022
Return