AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultra-broadband, fast, and polarization-sensitive photoresponse of low-symmetry 2D NdSb2

Gang Li1Hanlin Zhang1Yong Li2Shiqi Yin1Xucai Kan2( )Wensen Wei3Haifeng Du3Binghui Ge1Chao An1Mingliang Tian3Feng Yan4Sanjun Yang5Tianyou Zhai5Liang Li1( )
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Engineering Technology Research Center of Magnetic Materials, School of Physics and Materials Science, Anhui University, Hefei 230601, China
Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Science, Hefei 230031, China
Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Show Author Information

Graphical Abstract

Robust anisotropic phonon and photoresponse were demonstrated in NdSb2, and thephotothermoelectric effect was confirmed by scanning photocurrent microscopy measurements.Realizing a fast response with 15 µs and an ideal responsivity of 0.49 mA·W−1 and the self-poweredability shows no obvious deviation when operated after 8 months.

Abstract

Broadband photodetectors with polarization-sensitive ability have received extraordinary attention for modern optoelectronic devices. Ideal photodetectors should possess high responsivity, fast response, and good stability, which are rare to meet at the same time in one low-symmetric two-dimentional (2D) material. In this work, neodymium diantimonides (NdSb2), a member of light rare-earth diantimonides RSb2 (R = La–Nd, Sm) with low-symmetry structure, is introduced as a fascinating highly anisotropic 2D material for broadband detection (532 nm to 4 µm). The photodetector exhibits a responsivity of 0.49 mA·W−1 with 15 µs response time at 532 nm and highly stable performance under ambient conditions over 8 months. Furthermore, we identify the polarization-sensitive photoresponse of the detector and demonstrate a high anisotropic factor ~ 1.6. In addition, strong in-plane anisotropy is revealed by anisotropic phonon response and the photodetection mechanism is investigated by scanning photocurrent microscopy measurements. This pioneer work on NdSb2 paves the way for further exploration of 2D RSb2 for high performance polarized photodetectors with fast photothermoelectric response.

Electronic Supplementary Material

Download File(s)
12274_2022_4156_MOESM1_ESM.pdf (1.9 MB)

References

1

Sunku, S. S.; Halbertal, D.; Stauber, T.; Chen, S.; McLeod, A. S.; Rikhter, A.; Berkowitz, M. E.; Lo, C. F. B.; Gonzalez-Acevedo, D. E.; Hone, J. C. et al. Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. Nat. Commun. 2021, 12, 1641.

2

Ma, J. C.; Gu, Q. Q.; Liu, Y. N.; Lai, J. W.; Yu, P.; Zhuo, X.; Liu, Z.; Chen, J. H.; Feng, J.; Sun, D. Nonlinear photoresponse of type-II weyl semimetals. Nat. Mater. 2019, 18, 476–481.

3

Liu, J.; Xia, F. N.; Xiao, D.; García de Abajo, F. J.; Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 2020, 19, 830–837.

4

Rogalski, A. HgCdte infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267–2336.

5

Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

6

Chi, S. M.; Li, Z. L.; Xie, Y.; Zhao, Y. G.; Wang, Z. Y.; Li, L.; Yu, H. H.; Wang, G.; Weng, H. M.; Zhang, H. J. et al. A wide-range photosensitive weyl semimetal single crystal—TaAs. Adv. Mater. 2018, 30, 1801372.

7

Wang, L.; Liu, C. L.; Chen, X. S.; Zhou, J.; Hu, W. D.; Wang, X. F.; Li, J. H.; Tang, W. W.; Yu, A. Q.; Wang, S. W. et al. Toward sensitive room-temperature broadband detection from infrared to terahertz with antenna-integrated black phosphorus photoconductor. Adv. Funct. Mater. 2017, 27, 1604414.

8

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

9

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

10

Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

11

Lai, J. W.; Liu, X.; Ma, J. C.; Wang, Q. S.; Zhang, K. N.; Ren, X.; Liu, Y. N.; Gu, Q. Q.; Zhuo, X.; Lu, W. et al. Anisotropic broadband photoresponse of layered type-ii weyl semimetal MoTe2. Adv. Mater. 2018, 30, 1707152.

12

Lai, J. W.; Liu, Y. N.; Ma, J. C.; Zhuo, X.; Peng, Y.; Lu, W.; Liu, Z.; Chen, J. H.; Sun, D. Broadband anisotropic photoresponse of the “hydrogen atom” version type-II weyl semimetal candidate TaIrTe4. ACS Nano 2018, 12, 4055–4061.

13

Wang, Q. S.; Yesilyurt, C.; Liu, F. C.; Siu, Z. B.; Cai, K. M.; Kumar, D.; Liu, Z.; Jalil, M. B. A.; Yang, H. Anomalous photothermoelectric transport due to anisotropic energy dispersion in WTe2. Nano Lett. 2019, 19, 2647–2652.

14

Pace, S.; Martini, L.; Convertino, D.; Keum, D. H.; Forti, S.; Pezzini, S.; Fabbri, F.; Miseikis, V.; Coletti, C. Synthesis of large-scale monolayer 1T'-MoTe2 and its stabilization via scalable hbn encapsulation. ACS Nano 2021, 15, 4213–4225.

15

Ye, F.; Lee, J.; Hu, J.; Mao, Z. Q.; Wei, J.; Feng, P. X. L. Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions. Small 2016, 12, 5802–5808.

16

Borsese, A.; Ferro, R.; Capelli, R.; Delfino, S. Heats of formation of neodymium-antimony alloys. J. Less Common Met. 1997, 15, 77–83.

17
Acatrinei, A. Angle-resolved photoemission study and neutron diffraction measurements on LaSb2. Ph. D. Dissertation, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, 2003.
18

Bud’ko, S. L.; Canfield, P. C.; Mielke, C. H.; Lacerda, A. H. Anisotropic magnetic properties of light rare-earth diantimonides. Phys. Rev. B 1998, 57, 13624.

19

Ma, Y. Y.; Tang, B. B.; Lian, W. T.; Wu, C. Y.; Wang, X. M.; Ju, H. X.; Zhu, C. F.; Fan, F. J.; Chen, T. Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. J. Mater. Chem. A 2020, 8, 6510–6516.

20

Zhang, Y. Y.; Chen, Y.; Kou, Q. W.; Wang, Z.; Han, D. L.; Sun, Y. T.; Yang, J. H.; Liu, Y.; Yang, L. L. Effects of Nd concentration on structural and magnetic properties of ZnFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 3665–3671.

21

Abdusalyamova, M. N. Phase diagrams and thermodynamic properties of rare earth-antimony systems. J. Alloys Compd. 1993, 202, L15–L20.

22

Li, X. B.; Chen, C.; Yang, Y.; Lei, Z. B.; Xu, H. 2D re-based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320.

23

Tan, C. Y.; Yin, S. Q.; Chen, J. W.; Lu, Y.; Wei, W. S.; Du, H. F.; Liu, K. L.; Wang, F. K.; Zhai, T. Y.; Li, L. Broken-gap PtS2/WSe2 van der waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano 2021, 15, 8328–8337.

24

Yang, Y.; Zhang, K. X.; Zhang, L. B.; Hong, G.; Chen, C.; Jing, H. M.; Lu, J. B.; Wang, P.; Chen, X. S.; Wang, L. et al. Controllable growth of type-II dirac semimetal PtTe2 atomic layer on au substrate for sensitive room temperature terahertz photodetection. InfoMat 2021, 3, 705–715.

25

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10. 6 µm. Adv. Mater. 2020, 32, 2004412.

26

Peng, L. C.; Ye, S.; Song, J.; Qu, J. L. Solution-phase synthesis of few-layer hexagonal antimonene nanosheets via anisotropic growth. Angew. Chem., Int. Ed. 2019, 58, 9891–9896.

27

Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. et al. Two-dimensional antimonene single crystals grown by van der waals epitaxy. Nat. Commun. 2016, 7, 13352.

28

Nguyen, G. D.; Oyedele, A. D.; Haglund, A.; Ko, W.; Liang, L. B.; Puretzky, A. A.; Mandrus, D.; Xiao, K.; Li, A. P. Atomically precise PdSe2 pentagonal nanoribbons. ACS Nano 2020, 14, 1951–1957.

29

Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron–photon and electron–phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

30

Chen, S. Y.; Goldstein, T.; Venkataraman, D.; Ramasubramaniam, A.; Yan, J. Activation of new Raman modes by inversion symmetry breaking in type ii weyl semimetal candidate T'-MoTe2. Nano Lett. 2016, 16, 5852–5860.

31

Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

32

Zhou, X.; Hu, X. Z.; Jin, B.; Yu, J.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci. 2018, 5, 1800478.

33

Luo, S. W.; Qi, X.; Yao, H.; Ren, X. H.; Chen, Q.; Zhong, J. X. Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes. J. Phys. Chem. C 2017, 121, 4674–4679.

34

Pi, L. J.; Hu, C. G.; Shen, W. F.; Li, L.; Luo, P.; Hu, X. Z.; Chen, P.; Li, D. Y.; Li, Z. X.; Zhou, X. et al. Highly in-plane anisotropic 2D PdSe2 for polarized photodetection with orientation selectivity. Adv. Funct. Mater. 2020, 31, 2006774.

35

Li, G.; Yin, S. Q.; Tan, C. Y.; Chen, L. J.; Yu, M. X.; Li, L.; Yan, F. Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy. Adv. Funct. Mater. 2021, 31, 2104787.

36

Miao, J. S.; Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. 2020, 14, 1878–1888.

37

Zhong, F.; Wang, H.; Wang, Z.; Wang, Y.; He, T.; Wu, P. S.; Peng, M.; Wang, H. L.; Xu, T. F.; Wang, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Res. 2021, 14, 1840–1862.

38

Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.

39

Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

40

Wang, R.; Steinfink, H. The crystal chemistry of selected AB2 rare earth compounds with selenium, tellurium, and antimony. Inorg. Chem. 1967, 6, 1685–1692.

Nano Research
Pages 5469-5475
Cite this article:
Li G, Zhang H, Li Y, et al. Ultra-broadband, fast, and polarization-sensitive photoresponse of low-symmetry 2D NdSb2. Nano Research, 2022, 15(6): 5469-5475. https://doi.org/10.1007/s12274-022-4156-2
Topics:

857

Views

19

Crossref

22

Web of Science

21

Scopus

3

CSCD

Altmetrics

Received: 28 October 2021
Revised: 22 December 2021
Accepted: 12 January 2022
Published: 10 March 2022
© Tsinghua University Press 2022
Return