Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The zinc-rich epoxy cathodic protection coating is the most widely used anticorrosion material for marine steel. However, traditional conductive fillers lack the intelligent self-healing effect, which limits the long-term anticorrosion performance. Herein, with uniform carbon-coated ZnS (ZnS@C) nanoballs as the smart active release filler, we propose an anticorrosive and self-healing zinc-rich maleic anhydride epoxy coating. Due to the high pore filling efficiency of the nanoballs, the water vapor transmission rate of the coating with an initial corrosion efficiency of 99.92% and a low-frequency impedance of |Z|f=10mHz = 3.88 × 1010 Ω·cm2, was reduced by 52%. The carbon-shell of the nanoball increases electron transmission paths in the coating and improves conductivity by nearly two orders of magnitude, which effectively activates more Zn-sites and extends the cathodic protection time. Moreover, once the steel-substrate undergoes regional corrosion, the SO42− hydrolyzes from the ZnS-core of the nanoball and reacts with iron ions on the corroded area accurately and intelligently to fill the gap and self-heals into a new dense barrier layer (Fe2(SO4)3, etc.), which significantly improves the shielding protection ability during the long-term usage of the coating. The effective anticorrosion time of the proposed coating could be up to 3,400 h.
Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res. 2019, 12, 19–23.
Cunningham, M. F.; Campbell, J. D.; Fu, Z. W.; Bohling, J.; Leroux, J. G.; Mabee, W.; Robert, T. Future green chemistry and sustainability needs in polymeric coatings. Green Chem. 2019, 21, 4919–4926.
Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 2018, 11, 1873–1882.
Shreepathi, S.; Bajaj, P.; Mallik, B. P. Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: Role of Zn content on corrosion protection mechanism. Electrochim. Acta 2010, 55, 5129–5134.
Park, S. M.; Shon, M. Y. Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating. J. Ind. Eng. Chem. 2015, 21, 1258–1264.
Shirehjini, F. T.; Danaee, I.; Eskandari, H.; Zarei, D. Effect of nano clay on corrosion protection of zinc-rich epoxy coatings on steel 37. J. Mater. Sci. Technol. 2016, 32, 1152–1160.
Schaefer, K.; Miszczyk, A. Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc. Corros. Sci. 2013, 66, 380–391.
Gergely, A.; Pfeifer, É.; Bertóti, I.; Török, T.; Kálmán E. Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrrole. Corros. Sci. 2011, 53, 3486–3499.
Zhou, S. G.; Wu, Y. M.; Zhao, W. J.; Yu, J. J.; Jiang, F. W.; Wu, Y. H.; Ma, L. Q. Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate. Mater. Des. 2019, 169, 107694.
Lee, J.; Shin, S.; Jiang, Y. H.; Jeong, C.; Stone, H. A.; Choi, C. H. Oil-impregnated nanoporous oxide layer for corrosion protection with self-healing. Adv. Funct. Mater. 2017, 27, 1606040.
Li, Y.; Li, L.; Sun, J. Q. Bioinspired self-healing superhydrophobic coatings. Angew. Chem. 2010, 122, 6265–6269.
Wei, H. G.; Wang, Y. R.; Guo, J.; Shen, N. Z.; Jiang, D. W.; Zhang, X.; Yan, X. R.; Zhu, J. H.; Wang, Q.; Shao, L. et al. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A 2015, 3, 469–480.
Qian, H. C.; Xu, D. K.; Du, C. W.; Zhang, D. W.; Li, X. G.; Huang, L. Y.; Deng, L. P.; Tu, Y. C.; Mol, J. M. C.; Terryn, H. A. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. J. Mater. Chem. A 2017, 5, 2355–2364.
Zhou, H.; Wang, H. X.; Niu, H. T.; Zhao, Y.; Xu, Z. G.; Lin, T. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv. Funct. Mater. 2017, 27, 1604261.
Chen, J. D.; Lin, C. S.; Zhao, D.; Luo, M.; Peng, G.; Li, B. X.; Yang, S. D.; Sun, Y. S.; Ye, N. Anionic aliovalent substitution from structure models of zns: Novel defect diamond-like halopnictide infrared nonlinear optical materials with wide band gaps and large SHG effects. Angew. Chem. 2020, 132, 23755–23759.
Han, W. W.; Liu, G. C.; Seo, W.; Lee, H.; Chu, H. Q.; Yang, W. Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage. Carbon 2021, 184, 534–543.
Jing, M. J.; Chen, Z. G.; Li, Z.; Li, F. Y.; Chen, M. J.; Zhou, M. J.; He, B. H.; Chen, L.; Hou, Z. H.; Chen, X. B. Facile synthesis of ZnS/N, S co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 704–712.
Li, J. M.; Fu, Y.; Shi, X. D.; Xu, Z. M.; Zhang, Z. A. Urchinlike ZnS microspheres decorated with nitrogen-doped carbon: A superior anode material for lithium and sodium storage. Chem.—Eur. J. 2017, 23, 157–166.
Wang, H.; Chang, L.; Mai, Y. W.; Ye, L.; Williams, J. G. An experimental study of orthogonal cutting mechanisms for epoxies with two different crosslink densities. Int. J. Mach. Tools Manu. 2018, 124, 117–125.
Fu, L. J.; Tang, K.; Song, K. P.; Van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384–1389.
Zhang, Y.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chem. Eng. J. 2019, 356, 1042–1051.
Dong, S. H.; Li, C. X.; Ge, X. L.; Li, Z. Q.; Miao, X. G.; Yin, L. W. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 2017, 11, 6474–6482.
Ding, J. H.; Zhao, H. R.; Xu, B. Y.; Zhao, X. P.; Su, S. P.; Yu, H. B. Superanticorrosive graphene nanosheets through π deposition of boron nitride nanodots. ACS Sustainable Chem. Eng. 2019, 7, 10900–10911.
Che, J.; Park, K.; Grabowski, C. A.; Jawaid, A.; Kelley, J.; Koerner, H.; Vaia, R. A. Preparation of ordered monolayers of polymer grafted nanoparticles: Impact of architecture, concentration, and substrate surface energy. Macromolecules 2016, 49, 1834–1847.
Du, Y.; Guo, S. J.; Dong, S. J.; Wang, E. K. An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids. Biomaterials 2011, 32, 8584–8592.
Ding, R.; Jiang, J. M.; Gui, T. J. Study of impedance model and water transport behavior of modified solvent-free epoxy anticorrosion coating by EIS. J. Coat. Technol. Res. 2016, 13, 501–515.
Luo, X. H.; Zhong, J. W.; Zhou, Q. L.; Du, S.; Yuan, S.; Liu, Y. L. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Appl. Mater. Interfaces 2018, 10, 18400–18415.
Chang, K. C.; Hsu, M. H.; Lu, H. I.; Lai, M. C.; Liu, P. J.; Hsu, C. H.; Ji, W. F.; Chuang, T. L.; Wei, Y.; Yeh, J. M. et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon 2014, 66, 144–153.
Zhang, Y.; Tian, J. W.; Zhong, J.; Shi, X. M. Thin nacre-biomimetic coating with super-anticorrosion performance. ACS Nano 2018, 12, 10189–10200.
Paradisi, P.; Cesari, R.; Mainardi, F.; Tampieri, F. The fractional Fick's law for non-local transport processes. Physica. A Stat. Mech. Appl. 2001, 293, 130–142.
Ding, R.; Zheng, Y.; Yu, H. B.; Li, W. H.; Wang, X.; Gui, T. J. Study of water permeation dynamics and anti-corrosion mechanism of graphene/zinc coatings. J. Alloys Compd. 2018, 748, 481–495.
Jones, R. L.; Williams, C. E. Zinc sulfate reactions in hot corrosion. J. Electrochem. Soc. 1986, 133, 1742–1746.
O’Brien, R. N.; Kolny, H. A laser interferometric study of corrosion of coated and uncoated metals I.—Technique standardization with the Zn/ZnSO4/Zn system. Corrosion 1978, 34, 262–268.
Enning, D.; Garrelfs, J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol. 2014, 80, 1226–1236.
Thomas, S.; Birbilis, N.; Venkatraman, M. S.; Cole, I. S. Self-repairing oxides to protect zinc: Review, discussion and prospects. Corros. Sci. 2013, 69, 11–22.
Anjum, M. J.; Zhao, J. M.; Asl, V. Z.; Malik, M. U.; Yasin, G.; Khan, W. Q. Green corrosion inhibitors intercalated Mg: Al layered double hydroxide coatings to protect Mg alloy. Rare Met. 2021, 40, 2254–2265.
Liu, H. N.; Zhang, K.; Li, X. G.; Li, Y. J.; Ma, M. L.; Shi, G. L.; Yuan, J. W.; Wang, K. K. Microstructure and corrosion resistance of bone-implanted Mg-Zn-Ca-Sr alloy under different cooling methods. Rare Met. 2021, 40, 643–650.