AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy

Nannan Zhang1,§Gaofeng Shu1,§Lin Shen1Jiayi Ding1Enqi Qiao1Shiji Fang1Jingjing Song1Yang Yang1Zhongwei Zhao1Chenying Lu1Jianfei Tu1Min Xu1Yongzhong Du2( )Minjiang Chen1( )Jiansong Ji1( )
Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, School of Medicine, Lishui Hospital of Zhejiaing University, Lishui 323000, China
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

§ Nannan Zhang and Gaofeng Shu contributed equally to this work.

Show Author Information

Graphical Abstract

There is an urgent need to explore new promising treatment modalities to improve the shortcomings oftraditional anti-tumor therapy. Here, a multifunctional mesoporous polydopamine nanoparticles(Pt@MPDA/GOx/Fe3+ NPs) was prepared for magnetic resonance imaging (MRI)-guided photothermaltherapy (PTT)-enhanced chemodynamic therapy (CDT) synergistic cancer therapy.

Abstract

Traditional anticancer treatments fail to significantly improve prognoses, and exploration of novel promising therapeutic modalities is urgently needed. In this study, multifunctional mesoporous polydopamine nanoparticles (Pt@MPDA/GOx/Fe3+ NPs) loaded with glucose oxidase (GOx), Fe ions and ultrasmall Pt nanoparticles (NPs) were prepared for magnetic resonance imaging (MRI)-guided photothermal therapy (PTT)-enhanced chemodynamic therapy (CDT). The oxidation of intratumoral glucose to H2O2 and GOx induced an H2O2-rich microenvironment, and then elevated H2O2 was catalyzed into highly cytotoxic ·OH by Fe3+ via a Fenton reaction for CDT to induce cancer cell death efficiently. Notably, the heat generated by MPDA NPs under laser irradiation offered a moderate PTT to cascade the CDT effect. Moreover, Pt NPs can oxidize H2O2 to yield O2, which in turn accelerates the catalytic process of GOx to increase the efficiency of CDT. Meanwhile, in the high oxidation environment of tumor cells, Pt NPs are oxidized into Pt2+ to achieve a tumor chemotherapy effect. In addition, chelated Fe3+ endows the system with an MRI-visible function to monitor the treatment efficacy. In conclusion, this study provides a novel MRI-guided PTT-enhanced CDT synergistic nanomedicine platform for cancer therapy.

Electronic Supplementary Material

Download File(s)
12274_2022_4165_MOESM1_ESM.pdf (546.2 KB)

References

1

Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

2

Lin, H.; Chen, Y.; Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 2018, 47, 1938–1958.

3

Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

4

Fu, L. H.; Hu, Y. R.; Qi, C.; He, T.; Jiang, S. S.; Jiang, C.; He, J.; Qu, J. L.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019, 13, 13985–13994.

5

Stockwell, B. R.; Angeli, J. P. F.; Bayir, H.; Bush, A. I.; Conrad, M.; Dixon, S. J.; Fulda, S.; Gascón, S.; Hatzios, S. K.; Kagan, V. E. et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017, 171, 273–285.

6

Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946–956.

7

Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS Nano 2018, 12, 11819–11837.

8

Ma, X. P.; Wang, Y. G.; Zhao, T.; Li, Y.; Su, L. C.; Wang, Z. H.; Huang, G.; Sumer, B. D.; Gao, J. M. Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Am. Chem. Soc. 2014, 136, 11085–11092.

9

Ren, W. Z.; Yan, Y.; Zeng, L. Y.; Shi, Z. Z.; Gong, A.; Schaaf, P.; Wang, D.; Zhao, J. S.; Zou, B. B.; Yu, H. S. et al. A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy. Adv. Healthc. Mater. 2015, 4, 1526–1536.

10

Feng, W.; Han, X. G.; Wang, R. Y.; Gao, X.; Hu, P.; Yue, W. W.; Chen, Y.; Shi, J. L. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater. 2019, 31, 1805919.

11

Jiang, Y. Y.; Zhao, X. H.; Huang, J. G.; Li, J. C.; Upputuri, P. K.; Sun, H.; Han, X.; Pramanik, M.; Miao, Y. S.; Duan, H. W. et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 2020, 11, 1857.

12

Farokhi, M.; Mottaghitalab, F.; Saeb, M. R.; Thomas, S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J. Control. Release 2019, 309, 203–219.

13

Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.

14

Zhang, Y. M.; Hong, H.; Sun, B. Y.; Carter, K.; Qin, Y. R.; Wei, W.; Wang, D. P.; Jeon, M.; Geng, J. M.; Nickles, R. J. et al. Surfactant-stripped naphthalocyanines for multimodal tumor theranostics with upconversion guidance cream. Nanoscale 2017, 9, 3391–3398.

15

Shu, G. F.; Chen, M. J.; Song, J. J.; Xu, X. L.; Lu, C. Y.; Du, Y. Y.; Xu, M.; Zhao, Z. W.; Zhu, M. X.; Fan, K. et al. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer. Bioact. Mater. 2020, 6, 1423–1435.

16

Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

17

Su, Y. Y.; Wei, X. P.; Peng, F.; Zhong, Y. L.; Lu, Y. M.; Su, S.; Xu, T. T.; Lee, S. T.; He, Y. Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett. 2012, 12, 1845–1850.

18

Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811–817.

19

Wu, D.; Duan, X. H.; Guan, Q. Q.; Liu, J.; Yang, X.; Zhang, F.; Huang, P.; Shen, J.; Shuai, X. T.; Cao, Z. Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided cancer therapy. Adv. Funct. Mater. 2019, 29, 1900095.

20

Jiang, Q.; Luo, Z. M.; Men, Y. Z.; Yang, P.; Peng, H. B.; Guo, R. R.; Tian, Y.; Pang, Z. Q.; Yang, W. L. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials 2017, 143, 29–45.

21

Zhang, L. R.; Yang, P.; Guo, R. R.; Sun, J. X.; Xie, R. H.; Yang, W. L. Multifunctional mesoporous polydopamine with hydrophobic paclitaxel for photoacoustic imaging-guided chemo-photothermal synergistic therapy. Int. J. Nanomedicine 2019, 14, 8647–8663.

22

Cheng, W.; Zeng, X. W.; Chen, H. Z.; Li, Z. M.; Zeng, W. F.; Mei, L.; Zhao, Y. L. Versatile polydopamine platforms: Synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 2019, 13, 8537–8565.

23

Zhong, X. Y.; Yang, K.; Dong, Z. L.; Yi, X.; Wang, Y.; Ge, C. C.; Zhao, Y. L.; Liu, Z. Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotherapy of cancer. Adv. Funct. Mater. 2015, 25, 7327–7336.

24

Wang, L.; He, Y.; He, T. T.; Liu, G. H.; Lin, C. C.; Li, K.; Lu, L.; Cai, K. Y. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 2020, 255, 120208.

25

Li, W. Q.; Wang, Z. G.; Hao, S. J.; He, H. Z.; Wan, Y.; Zhu, C. D.; Sun, L. P.; Cheng, G.; Zheng, S. Y. Mitochondria-targeting polydopamine nanoparticles to deliver doxorubicin for overcoming drug resistance. ACS Appl. Mater. Interfaces 2017, 9, 16793–16802.

26

Cui, J. W.; Wang, Y. J.; Postma, A.; Hao, J. C.; Hosta-Rigau, L.; Caruso, F. Monodisperse polymer capsules: Tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating. Adv. Funct. Mater. 2010, 20, 1625–1631.

27

Gao, G.; Jiang, Y. W.; Sun, W.; Guo, Y. X.; Jia, H. R.; Yu, X. W.; Pan, G. Y.; Wu, F. G. Molecular targeting-mediated mild-temperature photothermal therapy with a smart albumin-based nanodrug. Small 2019, 15, 1900501.

28

Chen, W. H.; Luo, G. F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano 2017, 11, 1419–1431.

29

Fu, L. H.; Qi, C.; Lin, J.; Huang, P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 2018, 47, 6454–6472.

30

Cao, H. Q.; Yang, Y.; Liang, M. H.; Ma, Y. T.; Sun, N.; Gao, X. B.; Li, J. B. Pt@polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal therapy. Chem. Commun. 2021, 57, 255–258.

31

Shoshan, M. S.; Vonderach, T.; Hattendorf, B.; Wennemers, H. Peptide-coated platinum nanoparticles with selective toxicity against liver cancer cells. Angew. Chem., Int. Ed. 2019, 58, 4901–4905.

32

Ding, X.; Liu, J. H.; Li, J. Q.; Wang, F.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem. Sci. 2016, 7, 6695–6700.

33

Zhou, J.; Li, M. H.; Hou, Y. H.; Luo, Z.; Chen, Q. F.; Cao, H. X.; Huo, R. L.; Xue, C. C.; Sutrisno, L.; Hao, L. et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano 2018, 12, 2858–2872.

Nano Research
Pages 5262-5272
Cite this article:
Zhang N, Shu G, Shen L, et al. Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy. Nano Research, 2022, 15(6): 5262-5272. https://doi.org/10.1007/s12274-022-4165-1
Topics:

898

Views

24

Crossref

24

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 18 November 2021
Revised: 13 January 2022
Accepted: 15 January 2022
Published: 21 March 2022
© Tsinghua University Press 2022
Return