AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Prediction of freestanding semiconducting bilayer borophenes

Yuan-Yuan Ma1,2Xiao-Yun Zhao3Wenyan Zan1Yuewen Mu1( )Zhuhua Zhang4( )Si-Dian Li1( )
Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
Fenyang College of Shanxi Medical University, Fenyang 032200, China
Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, China
State Key Laboratory of Mechanics and Control of Mechanical Structures, and Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Show Author Information

Graphical Abstract

Extensive first-principles calculations predict the most stable freestanding BL-α+ borophenesB22(Cmmm) and B22 (C2/m) which, as the most stable BL borophenes reported to date, arecomposed of interwoven boron triple chains as boron analogs of monolayer graphene (5)consisting of interwoven carbon single chains

Abstract

Supported bilayer α-borophene (BL-α borophene) on Ag(111) substrate has been synthesized in recent experiments. Based on the experimentally observed quasi-planar C6v B36 (1), its monolayer assembly α+-borophene B11 (P6/mmm) (2), and extensive global minimum searches augmented with density functional theory calculations, we predict herein freestanding BL-α+ borophenes B22 (Cmmm) (3) and B22 (C2/m) (4) which, as the most stable BL borophenes reported to date, are composed of interwoven boron triple chains as boron analogs of monolayer graphene (5) consisting of interwoven carbon single chains. The nearly degenerate eclipsed B22 (3) and staggered B22 (4) with the hexagonal hole density of η = 1/12 and interlayer bonding density of u = 1/4 appear to be two-dimensional semiconductors with the indirect band gaps of 0.952 and 1.144 eV, respectively. Detailed bonding analyses reveal one delocalized 12c-2e π bond over each hexagonal hole in both the B22 (3) and B22 (4), similar to the situation in monolayer graphene which contains one delocalized 6c-2e π bond over each C6 hexagon. Furthermore, these BL-α+ borophenes appear to remain highly stable on Ag(111) substrate, presenting the possibility to form supported BL-α+ borophenes.

Electronic Supplementary Material

Download File(s)
12274_2022_4169_MOESM1_ESM.pdf (1.5 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200.

3

Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

4

Feng, B. J.; Li, H.; Liu, C. C.; Shao, T. N.; Cheng, P.; Yao, Y. G.; Meng, S.; Chen, L.; Wu, K. H. Observation of dirac cone warping and chirality effects in silicene. ACS Nano 2013, 7, 9049–9054.

5

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

6

Kern, G.; Kresse, G.; Hafner, J. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B 1999, 59, 8551–8559.

7

Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

8

Wu, M. H.; Fu, H. H.; Zhou, L.; Yao, K. L.; Zeng, X. C. Nine new phosphorene polymorphs with non-honeycomb structures: A much extended family. Nano Lett. 2015, 15, 3557–3562.

9

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

10

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat Nanotechnol 2011, 6, 147–150.

11

Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142.

12

Jian, T.; Chen, X. N.; Li, S. D.; Boldyrev, A. I.; Li, J.; Wang, L. S. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 2019, 48, 3550–3591.

13

Chen, Q.; Li, W. L.; Zhao, Y. F.; Zhang, S. Y.; Hu, H. S.; Bai, H.; Li, H. R.; Tian, W. J.; Lu, H. G.; Zhai, H. J. et al. Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 2015, 9, 754–760.

14

Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B. et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731.

15

Bezugly, V.; Kunstmann, J.; Grundkötter-Stock, B.; Frauenheim, T.; Niehaus, T.; Cuniberti, G. Highly conductive boron nanotubes: Transport properties, work functions, and structural stabilities. ACS Nano 2011, 5, 4997–5005.

16

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

17

Decker, B. F.; Kasper, J. S. The crystal structure of a simple rhombohedral form of boron. Acta Cryst. 1959, 12, 503–506.

18

Li, W. L.; Chen, Q.; Tian, W. J.; Bai, H.; Zhao, Y. F.; Hu, H. S.; Li, J.; Zhai, H. J.; Li, S. D.; Wang, L. S. The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257–12260.

19

Chen, Q.; Wei, G. F.; Tian, W. J.; Bai, H.; Liu, Z. P.; Zhai, H. J.; Li, S. D. Quasi-planar aromatic B36 and B36 clusters: All-boron analogues of coronene. Phys. Chem. Chem. Phys. 2014, 16, 18282–18287.

20

Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

21

Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349–1358.

22

Li, R.; You, X. R.; Wang, K.; Zhai, H. J. Nature of bonding in bowl-like B36 cluster revisited: Concentric (6π + 18π) double aromaticity and reason for the preference of a hexagonal hole in a central location. Chem. Asian J. 2018, 13, 1148–1156.

23

Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional materials: Polyphony in B flat. Nat. Chem. 2016, 8, 525–527.

24

Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.

25

Yang, X. B.; Ding, Y.; Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Phys. Rev. B 2008, 77, 041402.

26

Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 2012, 12, 2441–2445.

27

Xu, S. G.; Li, X. T.; Zhao, Y. J.; Liao, J. H.; Xu, H.; Yang, X. B. An electron compensation mechanism for the polymorphism of boron monolayers. Nanoscale 2018, 10, 13410–13416.

28

Yu, X.; Li, L. L.; Xu, X. W.; Tang, C. C. Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 2012, 116, 20075–20079.

29

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

30

Campbell, G. P.; Mannix, A. J.; Emery, J. D.; Lee, T. L.; Guisinger, N. P.; Hersam, M. C.; Bedzyk, M. J. Resolving the chemically discrete structure of synthetic borophene polymorphs. Nano Lett. 2018, 18, 2816–2821.

31

Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 2015, 54, 13022–13026.

32

Zhou, X. F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y.; Wang, H. T. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 2014, 112, 085502.

33

Ma, F. X.; Jiao, Y. L.; Gao, G. P.; Gu, Y. T.; Bilic, A.; Chen, Z. F.; Du, A. J. Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition. Nano Lett. 2016, 16, 3022–3028.

34

Zhao, Y. C.; Zeng, S. M.; Ni, J. Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 2016, 93, 014502.

35

Liu, X. L.; Li, Q. C.; Ruan, Q. Y.; Rahn, M. S.; Yakobson, B. I.; Hersam, M. C. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. 2022, 21, 35–40.

36

Chen, C. Y.; Lv, H. F.; Zhang, P.; Zhuo, Z. W.; Wang, Y.; Ma, C.; Li, W. B.; Wang, X. G.; Feng, B. J.; Cheng, P. et al. Synthesis of bilayer borophene. Nat. Chem. 2022, 14, 25–31.

37

Van De Walle, A.; Asta, M.; Ceder, G. The alloy theoretic automated toolkit: A user guide. Calphad 2002, 26, 539–553.

38

Sanchez, J. M.; Ducastelle, F.; Gratias, D. Generalized cluster description of multicomponent systems. Physica A:Stat Mech Appl 1984, 128, 334–350.

39

Wang, Y. C.; Lv, J.; Zhu, L.; Ma, Y. M. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 2010, 82, 094116.

40

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

41

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

42

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

43

Li, F. Y.; Jin, P.; Jiang, D. E.; Wang, L.; Zhang, S. B.; Zhao, J. J.; Chen, Z. F. B80 and B101–103 clusters: Remarkable stability of the core–shell structures established by validated density functionals. J. Chem. Phys. 2012, 136, 074302.

44

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

45

Savin, A.; Jepsen, O.; Flad, J.; Andersen, O. K.; Preuss, H.; Von Schnering, H. G. Electron localization in solid-state structures of the elements: The diamond structure. Angew. Chem., Int. Ed. 1992, 31, 187–188.

46

Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686.

47

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

48

Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.

49

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

50

Gonze, X.; Lee, C. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 1997, 55, 10355–10368.

51

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

52

Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268.

53

Galeev, T. R.; Dunnington, B. D.; Schmidt, J. R.; Boldyrev, A. I. Solid state adaptive natural density partitioning: A tool for deciphering multi-center bonding in periodic systems. Phys. Chem. Chem. Phys. 2013, 15, 5022–5029.

54

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

55

Xu, S. G.; Zheng, B. B.; Xu, H.; Yang, X. B. Ideal nodal line semimetal in a two-dimensional boron bilayer. J. Phys. Chem. C 2019, 123, 4977–4983.

56

Chen, W. J.; Ma, Y. Y.; Chen, T. T.; Ao, M. Z.; Yuan, D. F.; Chen, Q.; Tian, X. X.; Mu, Y. W.; Li, S. D.; Wang, L. S. B48: A bilayer boron cluster. Nanoscale 2021, 13, 3868–3876.

57

Gao, N.; Wu, X.; Jiang, X.; Bai, Y. Z.; Zhao, J. J. Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding. FlatChem 2018, 7, 48–54.

58

Wei, X. D.; Fragneaud, B.; Marianetti, C. A.; Kysar, J. W. Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys. Rev. B 2009, 80, 205407.

Nano Research
Pages 5752-5757
Cite this article:
Ma Y-Y, Zhao X-Y, Zan W, et al. Prediction of freestanding semiconducting bilayer borophenes. Nano Research, 2022, 15(6): 5752-5757. https://doi.org/10.1007/s12274-022-4169-x
Topics:

1017

Views

24

Crossref

23

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 10 November 2021
Revised: 24 December 2021
Accepted: 17 January 2022
Published: 07 March 2022
© Tsinghua University Press 2022
Return