AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes

Jiwei Chen1,2,§Jiangwen Wang2,3,§Keyu Ji1,2Bing Jiang1,2Xiao Cui2,3Wei Sha2,3Bingjun Wang1,2Xinhuan Dai2,3Qilin Hua2,3( )Lingyu Wan1( )Weiguo Hu1,2,3 ( )
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

§ Jiwei Chen and Jiangwen Wang contributed equally to this work.

Show Author Information

Graphical Abstract

A stretchable light-emitting diode (LED) composed of inorganic InGaN/GaN quantum wells andorganic hydrogel was successfully constructed. The optical properties of the device were modulated bybending strain, and the interface relaxation under large tensile strain of the device was demonstrated.

Abstract

Visualization is a direct, efficient, and simple interface method to realize the interaction between human and machine, whereas the flexible display unit, as the major bottleneck, still deeply hinders the advances of wearable and virtual reality devices. To obtain flexible optoelectronic devices, one of the effective methods is to transfer a high-efficient and long-lifetime inorganic optoelectronic film from its rigid epitaxial substrate to a foreign flexible/soft substrate. Additionally, piezo-phototronic effect is a fundamental theory for guiding the design of flexible optoelectronic devices. Herein, we demonstrate a flexible, stretchable, and transparent InGaN/GaN multiple quantum wells (MQWs)/polyacrylamide (PAAM) hydrogel-based light emitting diode coupling with the piezo-phototronic effect. The quantum well energy band and integrated luminous intensity (increased by more than 31.3%) are significantly modulated by external mechanical stimuli in the device. Benefiting from the small Young's modulus of hydrogel and weak Van der Waals force, the composite film can endure an extreme tensile condition of about 21.1% stretching with negligible tensile strains transmitted to the InGaN/GaN MQWs. And the stable photoluminescence characteristics can be observed. Moreover, the hydrogen-bond adsorption and excellent transparency of the hydrogel substrate greatly facilitate the packaging and luminescence of the optoelectronic device. And thus, such a novel integration scheme of inorganic semiconductor materials and organic hydrogel materials would help to guide the robust stretchable optoelectronic devices, and show great potential in emerging wearable devices and virtual reality applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4170_MOESM1_ESM.pdf (1.3 MB)

References

1

Kim, J.; Shim, H. J.; Yang, J.; Choi, M. K.; Kim, D. C.; Kim, J.; Hyeon, T.; Kim, D. H. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 2017, 29, 1700217.

2

Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.

3

Kim, D. H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887–4892.

4

Dai, X.; Messanvi, A.; Zhang, H. Z.; Durand, C.; Eymery, J.; Bougerol, C.; Julien, F. H.; Tchernycheva, M. Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett. 2015, 15, 6958–6964.

5

Chen, S. W. H.; Huang, Y. M.; Chang, Y. H.; Lin, Y.; Liou, F. J.; Hsu, Y. C.; Song, J.; Choi, J.; Chow, C. W.; Lin, C. C. et al. High-bandwidth green semipolar (20-21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 2020, 7, 2228–2235.

6

Cheung, Y. F.; Li, K. H.; Choi, H. W. Flexible free-standing III-nitride thin films for emitters and displays. ACS Appl. Mater. Interfaces 2016, 8, 21440–21445.

7

Lee, M.; Yang, M. N.; Song, K. M.; Park, S. InGaN/GaN blue light emitting diodes using freestanding GaN extracted from a Si substrate. ACS Photonics 2018, 5, 1453–1459.

8

Zhang, S.; Ma, B.; Zhou, X. Y.; Hua, Q. L.; Gong, J.; Liu, T.; Cui, X.; Zhu, J. Y.; Guo, W. B.; Jing, L. et al. Strain-controlled power devices as inspired by human reflex. Nat. Commun. 2020, 11, 326.

9

Hua, Q. L.; Cui, X.; Liu, H. T.; Pan, C. F.; Hu, W. G.; Wang, Z. L. Piezotronic synapse based on a single GaN microwire for artificial sensory systems. Nano Lett. 2020, 20, 3761–3768.

10

Chung, K.; Yoo, H.; Hyun, J. K.; Oh, H.; Tchoe, Y.; Lee, K.; Baek, H.; Kim, M.; Yi, G. C. Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots. Adv. Mater. 2016, 28, 7688–7694.

11

Chen, J.; Oh, S. K.; Nabulsi, N.; Johnson, H.; Wang, W. J.; Ryou, J. H. Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 2019, 57, 670–679.

12

Asad, M.; Li, Q.; Sachdev, M.; Wong, W. S. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates. Nano Energy 2020, 73, 104724.

13

Park, J. B.; Choi, W. S.; Chung, T. H.; Lee, S. H.; Kwak, M. K.; Ha, J. S.; Jeong, T. Transfer printing of vertical-type microscale light-emitting diode array onto flexible substrate using biomimetic stamp. Opt. Express 2019, 27, 6832–6841.

14

Choi, J. H.; Cho, E. H.; Lee, Y. S.; Shim, M. B.; Ahn, H. Y.; Baik, C. W.; Lee, E. H.; Kim, K.; Kim, T. H.; Kim, S. et al. Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer. Adv. Opt. Mater. 2014, 2, 267–274.

15

Zhu, J. Y.; Zhou, X. Y.; Jing, L.; Hua, Q. L.; Hu, W. G.; Wang, Z. L. Piezotronic effect modulated flexible AlGaN/GaN high-electron-mobility transistors. ACS Nano 2019, 13, 13161–13168.

16

Tchoe, Y.; Chung, K.; Lee, K.; Jo, J.; Chung, K.; Hyun, J. K.; Kim, M.; Yi, G. C. Free-standing and ultrathin inorganic light-emitting diode array. NPG Asia Mater. 2019, 11, 37.

17

Lee, S. Y.; Park, K. I.; Huh, C.; Koo, M.; Yoo, H. G.; Kim, S.; Ah, C. S.; Sung, G. Y.; Lee, K. J. Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications. Nano Energy 2012, 1, 145–151.

18

Chun, J.; Hwang, Y.; Choi, Y. S.; Kim, J. J.; Jeong, T.; Baek, J. H.; Ko, H. C.; Park, S. J. Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer. Scr. Mater. 2014, 77, 13–16.

19

Liu, Q. H.; Nian, G. D.; Yang, C. H.; Qu, S. X.; Suo, Z. G. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 2018, 9, 846.

20

Gan, D. L.; Xing, W. S.; Jiang, L. L.; Fang, J.; Zhao, C. C.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Lu, X. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 2019, 10, 1487.

21

Yuk, H.; Zhang, T.; Lin, S. T.; Parada, G. A.; Zhao, X. H. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196.

22

Xia, S.; Song, S. X.; Jia, F.; Gao, G. H. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 2019, 7, 4638–4648.

23

Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X. Y.; Zhao, X. H. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028.

24

Wirthl, D.; Pichler, R.; Drack, M.; Kettlguber, G.; Moser, R.; Gerstmayr, R.; Hartmann, F.; Bradt, E.; Kaltseis, R.; Siket, C. M. et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 2017, 3, e1700053.

25

Liu, Y.; Zhang, Y.; Yang, Q.; Niu, S. M.; Wang, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 2015, 14, 257–275.

26

Hu, Y. F.; Zhang, Y.; Lin, L.; Ding, Y.; Zhu, G.; Wang, Z. L. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 2012, 12, 3851–3856.

27

Jiang, C. Y.; Chen, Y.; Sun, J. M.; Jing, L.; Liu, M. M.; Liu, T.; Pan, Y.; Pu, X.; Ma, B.; Hu, W. G. et al. Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect. Nano Energy 2019, 57, 300–306.

28

Jiang, C. Y.; Jing, L.; Huang, X.; Liu, M. M.; Du, C. H.; Liu, T.; Pu, X.; Hu, W. G.; Wang, Z. L. Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect. ACS Nano 2017, 11, 9405–9412.

29

Huang, X.; Du, C. H.; Zhou, Y. L.; Jiang, C. Y.; Pu, X.; Liu, W.; Hu, W. G.; Chen, H.; Wang, Z. L. Piezo-phototronic effect in a quantum well structure. ACS Nano 2016, 10, 5145–5152.

30

Huang, X.; Jiang, C. Y.; Du, C. H.; Jing, L.; Liu, M. M.; Hu, W. G.; Wang, Z. L. Enhanced luminescence performance of quantum wells by coupling piezo-phototronic with plasmonic effects. ACS Nano 2016, 10, 11420–11427.

31

Liu, T.; Liu, M. M.; Dou, S.; Sun, J. M.; Cong, Z. F.; Jiang, C. Y.; Du, C. H.; Pu, X.; Hu, W. G.; Wang, Z. L. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 2018, 12, 2818–2826.

32

Gupta, M. K.; Bansil, R. Laser Raman spectroscopy of polyacrylamide. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 353–360.

33

Liu, N.; Sugawara, K.; Yoshitaka, N.; Yamada, H.; Takeuchi, D.; Akabane, Y.; Fujino, K.; Kawai, K.; Arima, K.; Yamamura, K. Damage-free highly efficient plasma-assisted polishing of a 20-mm square large mosaic single crystal diamond substrate. Sci. Rep. 2020, 10, 19432.

34

Liu, H. F.; Seng, H. L.; Teng, J. H.; Chua, S. J.; Chi, D. Z. Effects of lift-off and strain relaxation on optical properties of InGaN/GaN blue LED grown on 150 mm diameter Si(111) substrate. J. Cryst. Growth 2014, 402, 155–160.

35

Chen, Z. Y.; Zheng, X. T.; Li, Z. L.; Wang, P.; Rong, X.; Wang, T.; Yang, X. L.; Xu, F. J.; Qin, Z. X.; Ge, W. K. et al. Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs. Appl. Phys. Lett. 2016, 109, 062104.

36

Zhao, D. G.; Xu, S. J.; Xie, M. H.; Tong, S. Y.; Yang, H. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl. Phys. Lett. 2003, 83, 677–679.

37

Wang, L. S.; Zang, K. Y.; Tripathy, S.; Chua, S. J. Effects of periodic delta-doping on the properties of GaN: Si films grown on Si(111) substrates. Appl. Phys. Lett. 2004, 85, 5881–5883.

38

Liu, T.; Li, D.; Hu, H.; Huang, X.; Zhao, Z. F.; Sha, W.; Jiang, C. Y.; Du, C. H.; Liu, M. M.; Pu, X. et al. Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy 2020, 67, 104218.

39

Paranjape, B. V.; Arimitsu, N.; Krebes, E. S. Reflection and transmission of ultrasound from a planar interface. J. Appl. Phys. 1987, 61, 888–890.

40

Zhang, C. Z.; Koughia, C.; Güneş, O.; Luo, J.; Hossain, N.; Li, Y. S.; Cui, X. Y.; Wen, S. J.; Wong, R.; Yang, Q. Q. et al. Synthesis, structure and optical properties of high-quality VO2 thin films grown on silicon, quartz and sapphire substrates by high temperature magnetron sputtering: Properties through the transition temperature. J. Alloys Compd. 2020, 848, 156323.

Nano Research
Pages 5492-5499
Cite this article:
Chen J, Wang J, Ji K, et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Research, 2022, 15(6): 5492-5499. https://doi.org/10.1007/s12274-022-4170-4
Topics:

961

Views

17

Crossref

16

Web of Science

16

Scopus

3

CSCD

Altmetrics

Received: 14 November 2021
Revised: 24 December 2021
Accepted: 17 January 2022
Published: 28 March 2022
© Tsinghua University Press 2022
Return