Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The production of two-dimensional nanosheets (2D NSs) with all sizes (1–100 nm) and few (< 10) layers is highly desired but far from satisfactory. Herein, we report an all-physical top-down method to produce indium chalcogenide (In2X3 (X = S, Se, Te)) NSs with wide-range (150–3.0 nm) controlled sizes. The method combines silica-assisted ball-milling and sonication-assisted solvent exfoliation to fabricate multiscale NSs with varying distributions, which are then precisely separated by cascade centrifugation. Multiple characterization techniques reveal that the as-produced In2X3 NSs are intrinsic and defect-free and remain β-phase during the whole process. The redispersions of In2X3 NSs exhibit prominent excitation wavelength-, solvent-, concentration-, and size-dependent photoluminescence. The NSs-poly(methyl methacrylate) (PMMA) hybrid thin films demonstrate strong size effects in nonlinear saturation absorption. The absolute modulation depths of 35.4%, 43.3%, 47.2% and saturation intensities of 1.63, 1.05, 0.83 MW·cm−2 (i.e., 163, 105, and 83 nJ·cm−2) are derived for the In2S3, In2Se3, and In2Te3 quantum sheets, respectively. Our method paves the way for mass production and full exploration of full-scale 2D NSs.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Zhang, P. P.; Wang, F. X.; Yu, M. H.; Zhuang, X. D.; Feng, X. L. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem. Soc. Rev. 2018, 47, 7426–7451.
Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.
Zhao, P.; Ma, Y. D.; Lv, X. S.; Li, M. M.; Huang, B. B.; Dai, Y. Two-dimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy 2018, 51, 533–538.
Ding, J.; Shao, D. F.; Li, M.; Wen, L. W.; Tsymbal, E. Y. Two-dimensional antiferroelectric tunnel junction. Phys. Rev. Lett. 2021, 126, 057601.
Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.
Shi, H. H.; Li, M. M.; Shaygan Nia, A.; Wang, M. C.; Park, S.; Zhang, Z.; Lohe, M. R.; Yang, S.; Feng, X. L. Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics. Adv. Mater. 2020, 32, 1907244.
Cui, C. J.; Hu, W. J.; Yan, X. X.; Addiego, C.; Gao, W. P.; Wang, Y.; Wang, Z.; Li, L. Z.; Cheng, Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258.
Island, J. O.; Blanter, S. I.; Buscema, M.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 2015, 15, 7853–7858.
Im, T. H.; Lee, C. H.; Kim, J. C.; Kim, S.; Kim, M.; Park, C. M.; Lee, H. E.; Park, J. H.; Jang, M. S.; Lee, D. C. et al. Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy 2021, 84, 105889.
Cai, W. F.; Wang, J. Y.; He, Y. M.; Liu, S.; Xiong, Q. H.; Liu, Z.; Zhang, Q. Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction. Nano-Micro Lett. 2021, 13, 74.
Lin, L. Y.; Jones, T. W.; Yang, T. C. J.; Duffy, N. W.; Li, J. H.; Zhao, L.; Chi, B.; Wang, X. B.; Wilson, G. J. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2008300.
Yang, B.; Wang, M.; Hu, X. F.; Zhou, T. W.; Zang, Z. G. Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 2019, 57, 718–727.
Xue, F.; He, X.; Wang, Z. Y.; Retamal, J. R. D.; Chai, Z.; Jing, L. L.; Zhang, C. H.; Fang, H.; Chai, Y.; Jiang, T. et al. Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 2021, 33, 2008709.
Wang, S. Y.; Liu, L.; Gan, L. R.; Chen, H. W.; Hou, X.; Ding, Y.; Ma, S. L.; Zhang, D. W.; Zhou, P. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nature Commun. 2021, 12, 53.
Zhang, J. J.; Zhu, D. Y.; Yakobson, B. I. Heterobilayer with ferroelectric switching of topological state. Nano Lett. 2021, 21, 785–790.
Hu, T.; Su, H. S.; Li, Q. Y.; Kan, E. J. Tunable ferroelectric single-atom catalysis of CO oxidation using a Pt/In2Se3 monolayer. J. Mater. Chem. A 2020, 8, 20725–20731.
Fu, C. F.; Sun, J. Y.; Luo, Q. Q.; Li, X. X.; Hu, W.; Yang, J. L. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 2018, 18, 6312–6317.
Xue, F.; Zhang, J. W.; Hu, W. J.; Hsu, W. T.; Han, A.; Leung, S. F.; Huang, J. K.; Wan, Y.; Liu, S. H.; Zhang, J. L. et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano 2018, 12, 4976–4983.
Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A. A.; Yao, Z. J.; Ou, J. Z. Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett. 2020, 12, 66.
Wang, X. W.; Sun, G. Z.; Li, N.; Chen, P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 2016, 45, 2239–2262.
Wang, Z. X.; Safdar, M.; Jiang, C.; He, J. High-performance UV–visible–NIR broad spectral photodetectors based on one-dimensional In2Te3 nanostructures. Nano Lett. 2012, 12, 4715–4721.
Almeida, G.; Dogan, S.; Bertoni, G.; Giannini, C.; Gaspari, R.; Perissinotto, S.; Krahne, R.; Ghosh, S.; Manna, L. Colloidal monolayer β-In2Se3 nanosheets with high photoresponsivity. J. Am. Chem. Soc. 2017, 139, 3005–3011.
Zheng, C. X.; Yu, L.; Zhu, L.; Collins, J. L.; Kim, D.; Lou, Y. D.; Xu, C.; Li, M.; Wei, Z.; Zhang, Y. P. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 2018, 4, eaar7720.
Wang, J. M.; Yu, H. Z.; Hou, C. L.; Zhang, J. Solution-processable 2D α-In2Se3 as an efficient hole transport layer for high-performance and stable polymer solar cells. Sol. RRL 2020, 4, 1900428.
Han, C. C.; Zhang, Y.; Gao, P.; Chen, S. L.; Liu, X. F.; Mi, Y.; Zhang, J. Q.; Ma, Y. H.; Jiang, W. Y.; Chang, J. Q. High-yield production of MoS2 and WS2 quantum sheets from their bulk materials. Nano Lett. 2017, 17, 7767–7772.
Xu, Y. Q.; Chen, S. L.; Dou, Z. P.; Ma, Y. H.; Mi, Y.; Du, W. N.; Liu, Y.; Zhang, J. Q.; Chang, J. Q.; Liang, C. et al. Robust production of 2D quantum sheets from bulk layered materials. Mater. Horiz. 2019, 6, 1416–1424.
Liang, C.; Sui, X. Y.; Wang, A. C.; Chang, J. Q.; Wang, W. B.; Chen, Z. X.; Jiang, W. Y.; Ma, Y. H.; Zhang, J. Q.; Liu, X. F. et al. Controlled production of MoS2 full-scale nanosheets and their strong size effects. Adv. Mater. Interfaces 2020, 7, 2001130.
Xu, Y. Q.; Chang, J. Q.; Liang, C.; Sui, X. Y.; Ma, Y. H.; Song, L. T.; Jiang, W. Y.; Zhou, J.; Guo, H. B.; Liu, X. F. et al. Tailoring multi-walled carbon nanotubes into graphene quantum sheets. ACS Appl. Mater. Interfaces 2020, 12, 47784–47791.
Xu, Y. Q.; Wang, W. B.; Chen, Z. X.; Sui, X. Y.; Wang, A. C.; Liang, C.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Jiang, W. Y. et al. A general strategy for semiconductor quantum dot production. Nanoscale 2021, 13, 8004–8011.
Backes, C.; Szydłowska, B. M.; Harvey, A.; Yuan, S. J.; Vega-Mayoral, V.; Davies, B. R.; Zhao, P. L.; Hanlon, D.; Santos, E. J. G.; Katsnelson, M. I. et al. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 2016, 10, 1589–1601.
Zhang, S. M.; Xu, D. F.; Chen, X. H.; Zhang, S. Y.; An, C. S. Construction of ultrathin 2D/2D g-C3N4/In2Se3 heterojunctions with high-speed charge transfer nanochannels for promoting photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 528, 146858.
Huang, W. J.; Gan, L.; Yang, H. T.; Zhou, N.; Wang, R. Y.; Wu, W. H.; Li, H. Q.; Ma, Y.; Zeng, H. B.; Zhai, T. Y. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 2017, 27, 1702448.
Hegab, N. A.; Bekheet, A. E.; Afifi, M. A.; El-Shazly, A. A. Effect of annealing on the optical properties of In2Te3 thin films. Appl. Phys. A 1998, 66, 235–240.
Zhou, J. D.; Zeng, Q. S.; Lv, D. H.; Sun, L. F.; Niu, L.; Fu, W.; Liu, F. C.; Shen, Z. X.; Jin, C. H.; Liu, Z. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 2015, 15, 6400–6405.
Xu, H. C.; Wang, Y.; Dong, X. L.; Zheng, N.; Ma, H. C.; Zhang, X. F. Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Appl. Catal. B 2019, 257, 117932.
Balakrishnan, N.; Staddon, C. R.; Smith, E. F.; Stec, J.; Gay, D.; Mudd, G. W.; Makarovsky, O.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Eaves, L. et al. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport. 2D Mater. 2016, 3, 025030.
Reshmi, P. M.; Kunjomana, A. G.; Chandrasekharan, K. A. Spherulitic crystallization of β-In2Se3 by physical vapour deposition. Cryst. Res. Technol. 2011, 46, 153–158.
Huang, W. J.; Song, M. T.; Zhang, Y.; Zhao, Y. D.; Hou, H. Y.; Hoang, L. H.; Chen, X. B. Defects-induced oxidation of two-dimensional β-In2S3 and its optoelectronic properties. Opt. Mater. 2021, 119, 111372.
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.
Wang, C.; Zhang, L.; Wang, J. Y.; Su, S.; Jin, X. W.; An, P. J.; Sun, B. W.; Luo, Y. H. Ultra-thin two-dimensional nanosheets for in-situ NIR light-triggered fluorescence enhancement. FlatChem 2020, 24, 100193.
Jin, H.; Baek, B.; Kim, D.; Wu, F. L.; Batteas, J. D.; Cheon, J.; Son, D. H. Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dots. Nano Lett. 2017, 17, 7471–7477.
Li, R. J.; Tang, L. B.; Zhao, Q.; Ly, T. H.; Teng, K. S.; Li, Y.; Hu, Y. B.; Shu, C.; Lau, S. P. In2S3 quantum dots: Preparation, properties and optoelectronic application. Nanoscale Res. Lett. 2019, 14, 161.
Wang, C.; Jing, L. R.; Li, X. H.; Wang, Y. M.; Luo, W. F.; Yan, P. G.; Qu, M. J.; Wu, Z. Y. In2Se3 nanosheets for harmonic mode-locked fiber laser. Nanotechnology 2020, 31, 295402.
Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.
Zou, Z. X.; Li, D.; Liang, J. W.; Zhang, X. H.; Liu, H. W.; Zhu, C. G.; Yang, X.; Li, L. H.; Zheng, B. Y.; Sun, X. X. et al. Epitaxial synthesis of ultrathin β-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 2020, 12, 6480–6488.
Jiang, Y.; Chen, S. L.; Zheng, W. H.; Zheng, B. Y.; Pan, A. L. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 2021, 10, 72.