Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Physically vitrifying amorphous single-element metal requires ultrahigh cooling rates, which are still unachievable for most of the closest-packed metals. Here, we report a facile chemical synthetic strategy for single-element amorphous palladium nanoparticles with a purity of 99.35 at.% ± 0.23 at.% from palladium–silicon liquid droplets. In-situ transmission electron microscopy directly detected the solidification of palladium and the separation of silicon. Further hydrogen absorption experiment showed that the amorphous palladium expanded little upon hydrogen uptake, exhibiting a great potential application for hydrogen separation. Our results provide insight into the formation of amorphous metal at nanoscale.
Greer, A. L. Metallic glasses. Science 1995, 267, 1947–1953.
Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476.
Demetriou, M. D.; Launey, M. E.; Garrett, G.; Schramm, J. P.; Hofmann, D. C.; Johnson W. L.; Ritchie, R. O. A damage-tolerant glass. Nat. Mater. 2011, 10, 123–128.
Inoue, A.; Takeuchi, A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011, 59, 2243–2267.
Turnbull, D. Under what conditions can a glass be formed. Contemp. Phys. 1969, 10, 473–488.
Cohen, M. H.; Turnbull, D. Composition requirements for glass formation in metallic and ionic systems. Nature 1961, 189, 131–132.
Zhong, L.; Wang, J. W.; Sheng, H. W.; Zhang, Z.; Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014, 512, 177–180.
Tang, D. M.; Ren, C. L.; Lv, R. T.; Yu, W. J.; Hou, P. X.; Wang, M. S.; Wei, X. L.; Xu, Z.; Kawamoto, N.; Bando, Y. et al. Amorphization and directional crystallization of metals confined in carbon nanotubes investigated by in situ transmission electron microscopy. Nano Lett. 2015, 15, 4922–4927.
Davies, H. A.; Aucote, J.; Hull, J. B. Amorphous nickel produced by splat quenching. Nature 1973, 246, 13–14.
Bhat, M. H.; Molinero, V.; Soignard, E.; Solomon, V. C.; Sastry, S.; Yarger, J. L.; Angell, C. A. Vitrification of a monatomic metallic liquid. Nature 2007, 448, 787–790.
Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.
Adams, B. D.; Chen, A. C. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289.
Duwez, P.; Willens, R. H.; Crewdson, R. C. Amorphous phase in palladium—silicon alloys. J. Appl. Phys. 1965, 36, 2267–2269.
Wu, G; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.
Chen, H. S.; Turnbull, D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall. 1969, 17, 1021–1031.
Lee, K. L.; Kui, H. W. Phase separation in undercooled molten Pd80Si20: Part I. J. Mater. Res. 1999, 14, 3653–3662.
Mele, L.; Konings, S.; Dona, P.; Evertz, F.; Mitterbauer, C.; Faber, P.; Schampers, R.; Jinschek, J. R. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Microsc. Res. Tech. 2016, 79, 239–250.
Busch, R.; Schneider, S.; Peker, A.; Johnson, W. L. Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts. Appl. Phys. Lett. 1995, 67, 1544–1546.
Schneider, S.; Thiyagarajan, P.; Johnson, W. L. Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 1996, 68, 493–495.
Hong, S. Y.; Guo, W. H.; Kui, H. W. Metastable liquid miscibility gap in Pd-Si and its glass-forming ability: Part III. J. Mater. Res. 1999, 14, 3668–3672.
Takagi, D.; Kobayashi, Y.; Hibino, H.; Suzuki, S.; Homma, Y. Mechanism of gold-catalyzed carbon material growth. Nano Lett. 2008, 8, 832–835.
Baxi, H. C.; Massalski, T. B. The pdsi (Palladiumsilicon) system. J. Phase Equilib. 1991, 12, 349–356.
Glover, C. J.; Foran, G. J.; Ridgway, M. C. Structure of amorphous silicon investigated by EXAFS. Nucl. Instr. Meth. Phys. Res. B 2003, 199, 195–199.
Umesaki, N.; Kamijo, N.; Tanaka, I.; Nihara, K. XAFS studies of amorphous silicon nitride. Jpn. J. Appl. Phys. 1993, 32, 649–651.
Debieu, O.; Nalini, R. P.; Cardin, J.; Portier, X.; Perrière, J.; Gourbilleau, F. Structural and optical characterization of pure Si-rich nitride thin films. Nanoscale Res. Lett. 2013, 8, 31.
Faruq, M.; Villesuzanne, A.; Shao, G. S. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties. J. Non-Cryst. Solids 2018, 487, 72–86.
Schülli, T. U.; Daudin, R.; Renaud, G.; Vaysset, A.; Geaymond, O.; Pasturel, A. Substrate-enhanced supercooling in AuSi eutectic droplets. Nature 2010, 464, 1174–1177.
Konda, S.; Chen, A. C. Palladium based nanomaterials for enhanced hydrogen spillover and storage. Mater. Today 2015, 19, 100–108.
Borgschulte, A. The hydrogen grand challenge. Front. Energy Res. 2014, 4, 11.
Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143–1148.
Narayan, T. C.; Baldi, A.; Koh, A. L.; Sinclair, R.; Dionne, J. A. Reconstructing solute-induced phase transformations within individual nanocrystals. Nat. Mater. 2016, 15, 768–774.
Fan, Z. X.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 2016, 45, 63–82.