AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-element amorphous palladium nanoparticles formed via phase separation

Dong Sheng He1,§Yi Huang1,§Benjamin D. Myers2Dieter Isheim2Xinyu Fan1Guang-Jie Xia3Yunsheng Deng1Lin Xie1Shaobo Han4Yang Qiu1Yang-Gang Wang3Junhua Luan5Zengbao Jiao6Li Huang1Vinayak P. Dravid2Jiaqing He1( )
Pico Center and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

§ Dong Sheng He and Yi Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Phase separation and undercooling in the formation of single-element amorphous palladiumnanoparticles were observed by in-situ transmission electron microscopy.

Abstract

Physically vitrifying amorphous single-element metal requires ultrahigh cooling rates, which are still unachievable for most of the closest-packed metals. Here, we report a facile chemical synthetic strategy for single-element amorphous palladium nanoparticles with a purity of 99.35 at.% ± 0.23 at.% from palladium–silicon liquid droplets. In-situ transmission electron microscopy directly detected the solidification of palladium and the separation of silicon. Further hydrogen absorption experiment showed that the amorphous palladium expanded little upon hydrogen uptake, exhibiting a great potential application for hydrogen separation. Our results provide insight into the formation of amorphous metal at nanoscale.

Electronic Supplementary Material

Video
12274_4173_ESM1.mp4
Download File(s)
12274_2022_4173_MOESM1_ESM.pdf (3 MB)

References

1

Greer, A. L. Metallic glasses. Science 1995, 267, 1947–1953.

2

Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476.

3

Demetriou, M. D.; Launey, M. E.; Garrett, G.; Schramm, J. P.; Hofmann, D. C.; Johnson W. L.; Ritchie, R. O. A damage-tolerant glass. Nat. Mater. 2011, 10, 123–128.

4

Inoue, A.; Takeuchi, A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011, 59, 2243–2267.

5

Turnbull, D. Under what conditions can a glass be formed. Contemp. Phys. 1969, 10, 473–488.

6

Cohen, M. H.; Turnbull, D. Composition requirements for glass formation in metallic and ionic systems. Nature 1961, 189, 131–132.

7

Zhong, L.; Wang, J. W.; Sheng, H. W.; Zhang, Z.; Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014, 512, 177–180.

8

Tang, D. M.; Ren, C. L.; Lv, R. T.; Yu, W. J.; Hou, P. X.; Wang, M. S.; Wei, X. L.; Xu, Z.; Kawamoto, N.; Bando, Y. et al. Amorphization and directional crystallization of metals confined in carbon nanotubes investigated by in situ transmission electron microscopy. Nano Lett. 2015, 15, 4922–4927.

9

Davies, H. A.; Aucote, J.; Hull, J. B. Amorphous nickel produced by splat quenching. Nature 1973, 246, 13–14.

10

Bhat, M. H.; Molinero, V.; Soignard, E.; Solomon, V. C.; Sastry, S.; Yarger, J. L.; Angell, C. A. Vitrification of a monatomic metallic liquid. Nature 2007, 448, 787–790.

11

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

12

Adams, B. D.; Chen, A. C. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289.

13

Duwez, P.; Willens, R. H.; Crewdson, R. C. Amorphous phase in palladium—silicon alloys. J. Appl. Phys. 1965, 36, 2267–2269.

14

Wu, G; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

15

Chen, H. S.; Turnbull, D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall. 1969, 17, 1021–1031.

16

Lee, K. L.; Kui, H. W. Phase separation in undercooled molten Pd80Si20: Part I. J. Mater. Res. 1999, 14, 3653–3662.

17

Mele, L.; Konings, S.; Dona, P.; Evertz, F.; Mitterbauer, C.; Faber, P.; Schampers, R.; Jinschek, J. R. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Microsc. Res. Tech. 2016, 79, 239–250.

18

Busch, R.; Schneider, S.; Peker, A.; Johnson, W. L. Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts. Appl. Phys. Lett. 1995, 67, 1544–1546.

19

Schneider, S.; Thiyagarajan, P.; Johnson, W. L. Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 1996, 68, 493–495.

20

Hong, S. Y.; Guo, W. H.; Kui, H. W. Metastable liquid miscibility gap in Pd-Si and its glass-forming ability: Part III. J. Mater. Res. 1999, 14, 3668–3672.

21

Takagi, D.; Kobayashi, Y.; Hibino, H.; Suzuki, S.; Homma, Y. Mechanism of gold-catalyzed carbon material growth. Nano Lett. 2008, 8, 832–835.

22

Baxi, H. C.; Massalski, T. B. The pdsi (Palladiumsilicon) system. J. Phase Equilib. 1991, 12, 349–356.

23

Glover, C. J.; Foran, G. J.; Ridgway, M. C. Structure of amorphous silicon investigated by EXAFS. Nucl. Instr. Meth. Phys. Res. B 2003, 199, 195–199.

24

Umesaki, N.; Kamijo, N.; Tanaka, I.; Nihara, K. XAFS studies of amorphous silicon nitride. Jpn. J. Appl. Phys. 1993, 32, 649–651.

25

Debieu, O.; Nalini, R. P.; Cardin, J.; Portier, X.; Perrière, J.; Gourbilleau, F. Structural and optical characterization of pure Si-rich nitride thin films. Nanoscale Res. Lett. 2013, 8, 31.

26

Faruq, M.; Villesuzanne, A.; Shao, G. S. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties. J. Non-Cryst. Solids 2018, 487, 72–86.

27

Schülli, T. U.; Daudin, R.; Renaud, G.; Vaysset, A.; Geaymond, O.; Pasturel, A. Substrate-enhanced supercooling in AuSi eutectic droplets. Nature 2010, 464, 1174–1177.

28

Konda, S.; Chen, A. C. Palladium based nanomaterials for enhanced hydrogen spillover and storage. Mater. Today 2015, 19, 100–108.

29

Borgschulte, A. The hydrogen grand challenge. Front. Energy Res. 2014, 4, 11.

30

Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143–1148.

31

Narayan, T. C.; Baldi, A.; Koh, A. L.; Sinclair, R.; Dionne, J. A. Reconstructing solute-induced phase transformations within individual nanocrystals. Nat. Mater. 2016, 15, 768–774.

32

Fan, Z. X.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 2016, 45, 63–82.

Nano Research
Pages 5575-5580
Cite this article:
He DS, Huang Y, Myers BD, et al. Single-element amorphous palladium nanoparticles formed via phase separation. Nano Research, 2022, 15(6): 5575-5580. https://doi.org/10.1007/s12274-022-4173-1
Topics:

849

Views

8

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 20 December 2021
Revised: 15 January 2022
Accepted: 17 January 2022
Published: 21 March 2022
© Tsinghua University Press 2022
Return