AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light

Ming-Yu Qi1,§Hua-Kun Wu1,§Masakazu Anpo2Zi-Rong Tang1Yi-Jun Xu1( )
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
Department of Applied Chemistry, Osaka Prefecture University, Osaka 599-8531, Japan

§ Ming-Yu Qi and Hua-Kun Wu contributed equally to this work.

Show Author Information

Graphical Abstract

By means of using both incident and scattered photons based on the near-field scattering light-promoted optical absorption model, AuPd alloy nanoparticles have been rationally engineered by loading onto the spherical SiO2 support to improve their light-harvesting capability toward photocatalytic Suzuki cross-coupling synthesis.

Abstract

Photocatalyzed organic transformations have spurred immense interest in synthetic chemistry for the efficient conversion of solar energy into chemical energy. However, the crucial roles of support, which fixes catalytic sites and improves the light-harvesting ability, are often ignored in photoredox transformations. Herein, we report the utilization of spherical SiO2 support to engineer AuPd alloy particles (denoted as AuPd/SiO2), conceptually different from traditional methods for tuning optical absorption of plasmonic Au or AuPd particles, to manipulate light-harvesting ability of AuPd particles for highly selective and efficient photocatalytic Suzuki cross-coupling reactions. In this deliberately designed system, typically without the size and shape alternation of AuPd particles, the supported AuPd particles recycle the scattering light from spherical SiO2 support and achieve the significant broad light-harvesting ability instead of the surface plasmon resonance peak. The engineered AuPd/SiO2 composites by the use of near-field scattering-promoted optical absorption showcase the remarkably enhanced activity for visible-light-induced photocatalytic Suzuki cross-coupling reactions in comparison with that using commercial SiO2 support, highlighting the spherical-support-effect induced efficient utilization of scattered light. This work highlights the feasibility of manipulating the light-harvesting capability of bimetallic particles by the near-field scattering-promoted optical absorption model toward efficient photo-driven Suzuki cross-coupling reaction and other C–C coupling organic synthesis to produce high value-added chemicals.

Electronic Supplementary Material

Download File(s)
12274_2022_4176_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Duan, L. L.; Fu, R.; Xiao, Z. G.; Zhao, Q. F.; Wang, J. Q.; Chen, S. J.; Wan, Y. Activation of aryl chlorides in water under phase-transfer agent-free and ligand-free suzuki coupling by heterogeneous palladium supported on hybrid mesoporous carbon. ACS Catal. 2015, 5, 575–586.

[2]

Li, Y. L.; Zhang, Z. Q.; Fan, T.; Li, X. G.; Ji, J.; Dong, P.; Baines, R.; Shen, J. F.; Ye, M. X. Magnetic core–shell to yolk–shell structures in palladium-catalyzed Suzuki–Miyaura reactions: Heterogeneous versus homogeneous nature. ChemPlusChem 2016, 81, 564–573.

[3]

Tan, L. F.; Wu, X. L.; Chen, D.; Liu, H. Y.; Meng, X. W.; Tang, F. Q. Confining alloy or core–shell Au-Pd bimetallic nanocrystals in silica nanorattles for enhanced catalytic performance. J. Mater. Chem. A 2013, 1, 10382–10388.

[4]

Han, F. S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 2013, 42, 5270–5298.

[5]

Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J. M.; Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev. 2011, 40, 5181–5203.

[6]

Molnár, Á. Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem. Rev. 2011, 111, 2251–2320.

[7]

Lennox, A. J. J.; Lloyd-Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 2014, 43, 412–443.

[8]

Qi, M. Y.; Li, Y. H.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Efficient photoredox-mediated C–C coupling organic synthesis and hydrogen production over engineered semiconductor quantum dots. ACS Catal. 2020, 10, 14327–14335.

[9]

Li, J. Y.; Li, Y. H.; Qi, M. Y.; Lin, Q.; Tang, Z. R.; Xu, Y. J. Selective organic transformations over cadmium sulfide-based photocatalysts. ACS Catal. 2020, 10, 6262–6280.

[10]

Han, C.; Li, Y. H.; Li, J. Y.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cooperative syngas production and C−N bond formation in one photoredox cycle. Angew. Chem., Int. Ed. 2021, 60, 7962–7970.

[11]

Wang, Z. J.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I. Photocatalytic Suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem. Mater. 2015, 27, 1921–1924.

[12]

Jiao, Z. F.; Zhai, Z. Y.; Guo, X. N.; Guo, X. Y. Visible-light-driven photocatalytic Suzuki–Miyaura coupling reaction on Mott–Schottky-type Pd/SiC catalyst. J. Phys. Chem. C 2015, 119, 3238–3243.

[13]

Li, X. H.; Baar, M.; Blechert, S.; Antonietti, M. Facilitating room-temperature Suzuki coupling reaction with light: Mott–Schottky photocatalyst for C–C-coupling. Sci. Rep. 2013, 3, 1743.

[14]

Hickman, A. J.; Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 2012, 484, 177–185.

[15]

Zhao, Y.; Huang, Z. N.; Wang, L. M.; Chen, X. Y.; Zhang, Y.; Yang, X. Q.; Pang, D. W.; Kang, J. X.; Guo, L. Highly efficient and recyclable amorphous Pd(II)/crystal Pd(0) catalyst for boosting Suzuki reaction in aqueous solution. Nano Res. 2022, 15, 1193–1198.

[16]

Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

[17]

Jiang, B. J.; Song, S. Z.; Wang, J. Q.; Xie, Y.; Chu, W. Y.; Li, H. F.; Xu, H.; Tian, C. G.; Fu, H. G. Nitrogen-doped graphene supported Pd@PdO core–shell clusters for C–C coupling reactions. Nano Res. 2014, 7, 1280–1290.

[18]

Xu, L. M.; Li, B. J.; Yang, Z.; Shi, Z. J. Organopalladium(IV) chemistry. Chem. Soc. Rev. 2010, 39, 712–733.

[19]

Johansson, C. C. C.; Colacot, T. J. Metal-catalyzed α-arylation of carbonyl and related molecules: Novel trends in C–C bond formation by C–H bond functionalization. Angew. Chem., Int. Ed. 2010, 49, 676–707.

[20]

Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: Versatility and practicality. Angew. Chem., Int. Ed. 2009, 48, 5094–5115.

[21]

Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601.

[22]

Sarina, S.; Zhu, H. Y.; Jaatinen, E.; Xiao, Q.; Liu, H. W.; Jia, J. F.; Chen, C.; Zhao, J. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 2013, 135, 5793–5801.

[23]

Raza, F.; Yim, D.; Park, J. H.; Kim, H. I.; Jeon, S. J.; Kim, J. H. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light. J. Am. Chem. Soc. 2017, 139, 14767–14774.

[24]

Zhu, X. J.; Guo, Q. S.; Sun, Y. F.; Chen, S. J.; Wang, J. Q.; Wu, M. M.; Fu, W. Z.; Tang, Y. Q.; Duan, X. Z.; Chen, D. et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat. Commun. 2019, 10, 1428.

[25]

Melvin, A. A.; Illath, K.; Das, T.; Raja, T.; Bhattacharyya, S.; Gopinath, C. S. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces. Nanoscale 2015, 7, 13477–13488.

[26]

Jiang, W. B.; Low, J.; Mao, K. K.; Duan, D. L.; Chen, S. M.; Liu, W.; Pao, C. W.; Ma, J.; Sang, S. K.; Shu, C. et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J. Am. Chem. Soc. 2021, 143, 269–278.

[27]

Muzzio, M.; Lin, H. H.; Wei, K. C.; Guo, X. F.; Yu, C.; Yom, T.; Xi, Z.; Yin, Z. Y.; Sun, S. H. Efficient hydrogen generation from ammonia borane and tandem hydrogenation or hydrodehalogenation over AuPd nanoparticles. ACS Sustainable Chem. Eng. 2020, 8, 2814–2821.

[28]

Fageria, P.; Uppala, S.; Nazir, R.; Gangopadhyay, S.; Chang, C. H.; Basu, M.; Pande, S. Synthesis of monometallic (Au and Pd) and bimetallic (AuPd) nanoparticles using carbon nitride (C3N4) quantum dots via the photochemical route for nitrophenol reduction. Langmuir 2016, 32, 10054–10064.

[29]

Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J. F.; Arnold, D. P.; Liu, H. W.; Zhu, H. Y. Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16, 4272–4285.

[30]

Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542.

[31]

Kazuma, E.; Jung, J.; Ueba, H.; Trenary, M.; Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 2018, 360, 521–526.

[32]

Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 2012, 11, 1044–1050.

[33]

Zhang, N.; Han, C.; Xu, Y. J.; Foley IV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics 2016, 10, 473–482.

[34]

Han, C.; Li, S. H.; Tang, Z. R.; Xu, Y. J. Tunable plasmonic core–shell heterostructure design for broadband light driven catalysis. Chem. Sci. 2018, 9, 8914–8922.

[35]

Zhang, L.; Xie, Z. X.; Gong, J. L. Shape-controlled synthesis of Au-Pd bimetallic nanocrystals for catalytic applications. Chem. Soc. Rev. 2016, 45, 3916–3934.

[36]

Xiao, F. X. Layer-by-layer self-assembly construction of highly ordered metal-TiO2 nanotube arrays heterostructures (M/TNTs, M = Au, Ag, Pt) with tunable catalytic activities. J. Phys. Chem. C 2012, 116, 16487–16498.

[37]

Jiang, C. J.; Elliott, J. M.; Cardin, D. J.; Tsang, S. C. J. L. An electrochemical study of 4-aminothiophenol/Pt nanoparticle multilayers on gold electrodes. Langmuir 2008, 25, 534–541.

[38]

Weng, B.; Lu, K. Q.; Tang, Z. C.; Chen, H. M.; Xu, Y. J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 2018, 9, 1543.

[39]

Wu, H. K.; Li, Y. H.; Qi, M. Y.; Lin, Q.; Xu, Y. J. Enhanced photocatalytic CO2 reduction with suppressing H2 evolution via Pt cocatalyst and surface SiO2 coating. Appl. Catal. B:Environ. 2020, 278, 119267.

[40]

Gao, F.; Goodman, D. W. Pd-Au bimetallic catalysts: Understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 2012, 41, 8009–8020.

[41]

Han, C.; Quan, Q.; Chen, H. M.; Sun, Y. G.; Xu, Y. J. Progressive design of plasmonic metal–semiconductor ensemble toward regulated charge flow and improved Vis-NIR-driven solar-to-chemical conversion. Small 2017, 13, 1602947.

[42]

Mahapatra, S. S.; Datta, J. Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium. Int. J. Electrochem. 2011, 2011, 563495.

[43]

He, S. L.; Zhu, G. S.; Sun, Z. C.; Wang, J. D.; Hui, P.; Zhao, P. H.; Chen, W. W.; Jiang, X. Y. 2D AuPd alloy nanosheets: One-step synthesis as imaging-guided photonic nano-antibiotics. Nanoscale Adv. 2020, 2, 3550–3560.

[44]

Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.

[45]

Konishi, K.; Kamimura, T.; Wong, M. H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Large conduction band offset at SiO2/β-Ga2O3 heterojunction determined by X-ray photoelectron spectroscopy. Phys. Status Solidi B 2016, 253, 623–625.

[46]

Yuan, L.; Yang, M. Q.; Xu, Y. J. A low-temperature and one-step method for fabricating ZnIn2S4-GR nanocomposites with enhanced visible light photoactivity. J. Mater. Chem. A 2014, 2, 14401–14412.

[47]

Kakkar, R.; Sherly, E. D.; Madgula, K.; Devi, D. K.; Sreedhar, B. Synergetic effect of sodium citrate and starch in the synthesis of silver nanoparticles. J. Appl. Polym. Sci. 2012, 126, E154–E161.

[48]

Nascente, P. A. P.; De Castro, S. G. C.; Landers, R.; Kleiman, G. G. X-ray photoemission and Auger energy shifts in some gold-palladium alloys. Phys. Rev. B 1991, 43, 4659–4666.

[49]

Speziali, M. G.; Da Silva, A. G. M.; De Miranda, D. M. V.; Monteiro, A. L.; Robles-Dutenhefner, P. A. Air stable ligandless heterogeneous catalyst systems based on Pd and Au supported in SiO2 and MCM-41 for Suzuki–Miyaura cross-coupling in aqueous medium. Appl. Catal. A: Gen. 2013, 462–463, 39–45.

[50]

Zhang, N.; Qi, M. Y.; Yuan, L.; Fu, X. Z.; Tang, Z. R.; Gong, J. L.; Xu, Y. J. Broadband light harvesting and unidirectional electron flow for efficient electron accumulation for hydrogen generation. Angew. Chem., Int. Ed. 2019, 58, 10003–10007.

[51]

Xiao, Q.; Connell, T. U.; Cadusch, J. J.; Roberts, A.; Chesman, A. S. R.; Gomez, D. E. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catal. 2018, 8, 10331–10339.

[52]

Huang, H.; Zhang, L.; Lv, Z. H.; Long, R.; Zhang, C.; Lin, Y.; Wei, K. C.; Wang, C. M.; Chen, L.; Li, Z. Y. et al. Unraveling surface plasmon decay in core–shell nanostructures toward broadband light-driven catalytic organic synthesis. J. Am. Chem. Soc. 2016, 138, 6822–6828.

[53]

Ohkubo, K.; Suga, K.; Morikawa, K.; Fukuzumi, S. Selective oxygenation of ring-substituted toluenes with electron-donating and -withdrawing substituents by molecular oxygen via photoinduced electron transfer. J. Am. Chem. Soc. 2003, 125, 12850–12859.

[54]

Singh, G.; Kumar, M.; Sharma, K.; Bhalla, V. A supramolecular ensemble of a PBI derivative and Cu2O NPs: Potential photocatalysts for the Suzuki and Suzuki type coupling reactions. Green Chem. 2016, 18, 3278–3285.

[55]

Yang, M. Q.; Zhang, Y. H.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Visible-light-driven oxidation of primary C–H bonds over CdS with dual co-catalysts graphene and TiO2. Sci. Rep. 2013, 3, 3314.

[56]

Yuan, L.; Yang, M. Q.; Xu, Y. J. Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity. Nanoscale 2014, 6, 6335–6345.

[57]

Smith, G. B.; Dezeny, G. C.; Hughes, D. L.; King, A. O.; Verhoeven, T. R. Mechanistic studies of the Suzuki cross-coupling reaction. J. Org. Chem. 1994, 59, 8151–8156.

[58]

Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2483.

Nano Research
Pages 9967-9975
Cite this article:
Qi M-Y, Wu H-K, Anpo M, et al. Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light. Nano Research, 2022, 15(12): 9967-9975. https://doi.org/10.1007/s12274-022-4176-y
Topics:
Part of a topical collection:

1745

Views

29

Crossref

27

Web of Science

28

Scopus

2

CSCD

Altmetrics

Received: 29 December 2021
Revised: 29 December 2021
Accepted: 17 January 2022
Published: 09 March 2022
© Tsinghua University Press 2022
Return