AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction

Qianqian Wang1,2Jiaqi Li1Yongjie Li1Genmiao Shao1Zhe Jia1Baolong Shen1( )
School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
Show Author Information

Graphical Abstract

FeCoNiPB non-noble metal-based amorphous high-entropy oxides exhibit an outstanding oxygen evolution reaction (OER) catalytic performance. The superior OER electrocatalytic efficiency and stability of the FeCoNiPB oxides are primarily attributed to its unique amorphous high-entropy nanostructure, synergistic effects of the multiple components, and in situ-formed amorphous sheets with a thin (FeCoNi)OOH crystalline layer on the edge during long-term OER.

Abstract

Exploring high-performance and cost-effective electrocatalysts that are applicable in oxygen evolution reaction (OER) is crucial for water splitting and energy storage. In this work, a facile and scalable chemical reduction strategy is developed to synthesize FeCoNiPB non-noble metal-based amorphous high-entropy oxides for the OER in alkaline media. The FeCoNiPB oxides exhibit overpotentials of 235 and 306 mV at current densities of 10 and 100 mA/cm2, respectively, as well as a small Tafel slope of 53 mV/dec in 1.0 M KOH solution, outperforming the performance of FeCoPB, FeNiPB, and CoNiPB oxides and the commercial RuO2, while maintaining excellent stability with negligible overpotential amplification over 40 h. The superior OER electrocatalytic efficiency and stability of the FeCoNiPB catalyst is primarily attributed to its unique amorphous high-entropy nanostructure, synergistic effect of the multiple components, and in situ-formed amorphous sheets with a thin (FeCoNi)OOH crystalline layer on the edge during long-term OER. This work provides new insights to design and prepare low-cost, highly efficient, and durable OER electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4179_MOESM1_ESM.pdf (2.6 MB)

References

1

Ghoniem, A. F. Needs, resources and climate change: Clean and efficient conversion technologies. Prog. Energy Combust. Sci. 2011, 37, 15–51.

2

Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 14942–14962.

3

Santos, D. M. F.; Sequeira, C. A. C.; Figueiredo, J. L. Hydrogen production by alkaline water electrolysis. Quim. Nova 2013, 36, 1176–1193.

4

Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 2018, 8, 1701620.

5

Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res. 2018, 11, 1664–1675.

6

Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.

7

Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

8

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

9

Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 2650.

10

Jia, Z.; Yang, T.; Sun, L. G.; Zhao, Y. L.; Li, W. P.; Luan, J. H.; Lyu, F. C.; Zhang, L. C.; Kruzic, J. J.; Kai, J. J. et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 2020, 32, 2000385.

11

Ju, S.; Feng, J. Q.; Zou, P.; Xu, W.; Wang, S. J.; Gao, W. B.; Qiu, H. J.; Huo, J. T.; Wang, J. Q. A robust self-stabilized electrode based on Al-based metallic glasses for a highly efficient hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 3246–3251.

12

Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

13

Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

14

Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.

15

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

16

Jin, Z. Y.; Lv, J.; Jia, H. L.; Liu, W. H.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Sun, S. H. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

17

Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 2019, 1, 526–533.

18
Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res., in press, https://doi.org/10.1007/s12274-021-3802-4.
19

Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

20

Zhang, Y.; Lu, T.; Ye, Y. K.; Dai, W. J.; Zhu, Y. A.; Pan, Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for Co-prosperity of efficiency and stability in an oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 32548–32555.

21

Hu, Y. C.; Wang, Y. Z.; Su, R.; Cao, C. R.; Li, F.; Sun, C. W.; Yang, Y.; Guan, P. F.; Ding, D. W.; Wang, Z. L. et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater. 2016, 28, 10293–10297.

22

Miao, F.; Wang, Q. Q.; Zhang, L. C.; Shen, B. L. Magnetically separable Z-scheme FeSiB metallic glass/g-C3N4 heterojunction photocatalyst with high degradation efficiency at universal pH conditions. Appl. Surf. Sci. 2021, 540, 148401.

23

Tan, Y. W.; Zhu, F.; Wang, H.; Tian, Y.; Hirata, A.; Fujita, T.; Chen, M. W. Noble-metal-free metallic glass as a highly active and stable bifunctional electrocatalyst for water splitting. Adv. Mater. Interfaces 2017, 4, 1601086.

24

Li, R.; Liu, X. J.; Wu, R. Y.; Wang, J.; Li, Z. B.; Chan, K. C.; Wang, H.; Wu, Y.; Lu, Z. P. Flexible honeycombed nanoporous/glassy hybrid for efficient electrocatalytic hydrogen generation. Adv. Mater. 2019, 31, 1904989.

25

Wang, Z. J.; Li, M. X.; Yu, J. H.; Ge, X. B.; Liu, Y. H.; Wang, W. H. Low-iridium-content IrNiTa metallic glass films as intrinsically active catalysts for hydrogen evolution reaction. Adv. Mater. 2020, 32, 1906384.

26

Jia, Z.; Duan, X. G.; Qin, P.; Zhang, W. C.; Wang, W. M.; Yang, C.; Sun, H. Q.; Wang, S. B.; Zhang, L. C. Disordered atomic packing structure of metallic glass: Toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance. Adv. Funct. Mater. 2017, 27, 1702258.

27

Zhang, L. C.; Jia, Z.; Lyu, F. C.; Liang, S. X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576.

28

Li, B.; Chen, S. M.; Tian, J.; Gong, M.; Xu, H. X.; Song, L. Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction. Nano Res. 2017, 10, 3629–3637.

29
Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S. X.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S. et al. Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Res., in press, https://doi.org/10.1007/s12274-021-3804-2.
30

Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J. et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 2017, 29, 1606570.

31

Zhang, F. B.; Wu, J. L.; Jiang, W.; Hu, Q. Z.; Zhang, B. New and efficient electrocatalyst for hydrogen production from water splitting: Inexpensive, robust metallic glassy ribbons based on iron and cobalt. ACS Appl. Mater. Interfaces 2017, 9, 31340–31344.

32

Li, S. M.; Yang, X. H.; Yang, S. Y.; Gao, Q. Z.; Zhang, S. S.; Yu, X. Y.; Fang, Y. P.; Yang, S. H.; Cai, X. An amorphous trimetallic (Ni-Co-Fe) hydroxide-sheathed 3D bifunctional electrode for superior oxygen evolution and high-performance cable-type flexible zinc-air batteries. J. Mater. Chem. A 2020, 8, 5601–5611.

33

Lee, S.; Banjac, K.; Lingenfelder, M.; Hu, X. L. Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem., Int. Ed. 2019, 58, 10295–10299.

34

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

35

Zeng, Y. Q.; Yu, J. S.; Tian, Y.; Hirata, A.; Fujita, T.; Zhang, X. H.; Nishiyama, N.; Kato, H.; Jiang, J. Q.; Inoue, A. et al. Improving glass forming ability of off-eutectic metallic glass formers by manipulating primary crystallization reactions. Acta Mater. 2020, 200, 710–719.

36

Wu, Z. X.; Nie, D. Z.; Song, M.; Jiao, T. T.; Fu, G. T.; Liu, X. E. Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 2019, 11, 7506–7512.

37

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

38

Wu, Y. H.; Lian, J. Q.; Wang, Y. X.; Sun, J. J.; He, Z.; Gu, Z. J. Potentiostatic electrodeposition of self-supported Ni-S electrocatalyst supported on Ni foam for efficient hydrogen evolution. Mater. Des. 2021, 198, 109316.

39

Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.

40

Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.

41

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

42

Chunduri, A.; Gupta, S.; Bapat, O.; Bhide, A.; Fernandes, R.; Patel, M. K.; Bambole, V.; Miotello, A.; Patel, N. A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting. Appl. Catal. B:Environ. 2019, 259, 118051.

43

Zhang, P. L.; Wang, M.; Yang, Y.; Yao, T. Y.; Han, H. X.; Sun, L. C. Electroless plated Ni-Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy 2016, 19, 98–107.

44

Löffler, T.; Waag, F.; Gökce, B.; Ludwig, A.; Barcikowski, S.; Schuhmann, W. Comparing the activity of complex solid solution electrocatalysts using inflection points of voltammetric activity curves as activity descriptors. ACS Catal. 2021, 11, 1014–1023.

45

Waag, F.; Li, Y.; Ziefuß, A. R.; Bertin, E.; Kamp, M.; Duppel, V.; Marzun, G.; Kienle, L.; Barcikowski, S.; Gökce, B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019, 9, 18547–18558.

46

Jiang, S. D.; Tian, K. H.; Li, X. L.; Duan, C. Q.; Wang, D.; Wang, Z. Y.; Sun, H. Y.; Zheng, R. G.; Liu, Y. G. Amorphous high-entropy non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction. J. Colloid Interface Sci. 2022, 606, 635–644.

47

Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206.

48

Jia, Z.; Nomoto, K.; Wang, Q.; Kong, C.; Sun, L. G.; Zhang, L. C.; Liang, S. X.; Lu, J.; Kruzic, J. J. A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions. Adv. Funct. Mater. 2021, 31, 2101586.

49

Nsanzimana, J. M. V.; Dangol, R.; Reddu, V.; Duo, S.; Peng, Y. C.; Dinh, K. N.; Huang, Z. F.; Yan, Q. Y.; Wang, X. Facile synthesis of amorphous ternary metal borides-reduced graphene oxide hybrid with superior oxygen evolution activity. ACS Appl. Mater. Interfaces 2019, 11, 846–855.

50

Wang, X. X.; She, G. W.; Mu, L. X.; Shi, W. S. Amorphous Co-Mo-P-O bifunctional electrocatalyst via facile electrodeposition for overall water splitting. ACS Sustainable Chem. Eng. 2020, 8, 2835–2842.

51

Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 2015, 54, 6251–6254.

52

Xu, M.; Han, L.; Han, Y. J.; Yu, Y.; Zhai, J. F.; Dong, S. J. Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution. J. Mater. Chem. A 2015, 3, 21471–21477.

53

Zhang, N.; Feng, X. B.; Rao, D. W.; Deng, X.; Cai, L. J.; Qiu, B. C.; Long, R.; Xiong, Y. J.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.

54

Guo, L. S.; Yu, B. X.; Zhou, P.; Zhang, T.; Wang, F. H. Fabrication of low-cost Ni-P composite coating on Mg alloys with a significant improvement of corrosion resistance: Critical role of mitigating the galvanic contact between the substrate and the coating. Corros. Sci. 2021, 183, 109329.

55

Jia, Z.; Wang, Q.; Sun, L. G.; Wang, Q.; Zhang, L. C.; Wu, G.; Luan, J. H.; Jiao, Z. B.; Wang, A. D.; Liang, S. X. et al. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance. Adv. Funct. Mater. 2019, 29, 1807857.

56

Chen, R.; Wang, H. Y.; Miao, J. W.; Yang, H. B.; Liu, B. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core–shell nanowires. Nano Energy 2015, 11, 333–340.

57

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

58

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

59

Wang, Y. Y.; Qiao, M.; Li, Y. F.; Wang, S. Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 2018, 14, 1800136.

60

Xu, Z. J. Transition metal oxides for water oxidation: All about oxyhydroxides? Sci. China Mater. 2020, 63, 3–7.

61

Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.

62

Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662–3674.

Nano Research
Pages 8751-8759
Cite this article:
Wang Q, Li J, Li Y, et al. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Research, 2022, 15(10): 8751-8759. https://doi.org/10.1007/s12274-022-4179-8
Topics:

1234

Views

74

Crossref

75

Web of Science

79

Scopus

3

CSCD

Altmetrics

Received: 28 November 2021
Revised: 09 January 2022
Accepted: 19 January 2022
Published: 04 March 2022
© Tsinghua University Press 2022
Return