Graphical Abstract

Cancer cells aberrantly express immunosuppressive checkpoint ligands and produce certain metabolites that lead to T cell exhaustion. Immune checkpoint blockade (ICB) therapy that reinvigorates exhausted T cells have achieved impressive response in clinical cancer treatment. However, the limited clinical response rate and off-tumor toxicities restrict ICB therapy. Herein, cellular vesicles displaying anti-programmed cell death-1 (PD-1) single-chain variable fragment antibody (aPD-1-scFv) were prepared to reinvigorate T cell immunity to counteract cancer. The nanovesicles displaying aPD-1-scFv (aPD-1-scFv NVs) could enhance the anti-tumor activation of T cells through PD-1 blockade. Furthermore, NVs loading the A2a adenosine receptor (A2aR) antagonist CPI-444 assisted T cells to antagonize adenosine, an immunosuppressive metabolite produced by cancer cells. Hence, CPI-444 loaded aPD-1-scFv NVs could intensively increase the density and activity of tumor infiltrating T cells, directly restraining tumor progress and metastasis.
Sharpe, A. H.; Wherry, E. J.; Ahmed, R.; Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245.
Keir, M. E.; Butte, M. J.; Freeman, G. J.; Sharpe, A. H. Pd-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704.
Sun, C.; Mezzadra, R.; Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 2018, 48, 434–452.
Sanmamed, M. F.; Chen, L. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell 2018, 175, 313–326.
Ganesh, K.; Stadler, Z. K.; Cercek, A.; Mendelsohn, R. B.; Shia, J.; Segal, N. H.; Diaz, L. A. Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 361–375.
Schadendorf, D.; Fisher, D. E.; Garbe, C.; Gershenwald, J. E.; Grob, J. J.; Halpern, A.; Herlyn, M.; Marchetti, M. A.; McArthur, G.; Ribas, A. et al. Melanoma. Nat. Rev. Dis. Primers 2015, 1, 15003.
Preusser, M.; Lim, M.; Hafler, D. A.; Reardon, D. A.; Sampson, J. H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol. 2015, 11, 504–514.
O'Donnell, J. S.; Teng, M. W. L.; Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 151–167.
Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39.
Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (time) for effective therapy. Nat. Med. 2018, 24, 541–550.
Chen, Q. J.; Liu, L. S.; Lu, Y. F.; Chen, X. L.; Zhang, Y. J.; Zhou, W. X.; Guo, Q.; Li, C.; Zhang, Y. W.; Zhang, Y. et al. Tumor microenvironment-triggered aggregated magnetic nanoparticles for reinforced image-guided immunogenic chemotherapy. Adv. Sci. 2019, 6, 1802134.
Togashi, Y.; Shitara, K.; Nishikawa, H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat. Rev. Clin. Oncol. 2019, 16, 356–371.
Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416.
Gabrilovich, D. I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174.
Vijayan, D.; Young, A.; Teng, M. W. L.; Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 2017, 17, 709–724.
Decking, U. K. M.; Schlieper, G.; Kroll, K.; Schrader, J. Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ. Res. 1997, 81, 154–164.
Willingham, S. B.; Ho, P. Y.; Hotson, A.; Hill, C.; Piccione, E. C.; Hsieh, J.; Liu, L.; Buggy, J. J.; McCaffery, I.; Miller, R. A. A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and anti-CTLA-4 in preclinical models. Cancer Immunol. Res. 2018, 6, 1136–1149.
Ma, S. R.; Deng, W. W.; Liu, J. F.; Mao, L.; Yu, G. T.; Bu, L. L.; Kulkarni, A. B.; Zhang, W. F.; Sun, Z. J. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol. Cancer 2017, 16, 99.
Yang, J. X.; Wang, C. H.; Shi, S.; Dong, C. Y. Nanotechnologies for enhancing cancer immunotherapy. Nano Res. 2020, 13, 2595–2616.
Ramos-Casals, M.; Brahmer, J. R.; Callahan, M. K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M. A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M. E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 2020, 6, 38.
Khoja, L.; Day, D.; Chen, T. W. W.; Siu, L. L.; Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Ann. Oncol. 2017, 28, 2377–2385.
Topalian, S. L.; Taube, J. M.; Anders, R. A.; Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287.
Postow, M. A.; Sidlow, R.; Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018, 378, 158–168.
Adams, J. L.; Smothers, J.; Srinivasan, R.; Hoos, A. Big opportunities for small molecules in immuno-oncology. Nat. Rev. Drug Discov. 2015, 14, 603–622.
Osipov, A.; Saung, M. T.; Zheng, L.; Murphy, A. G. Small molecule immunomodulation: The tumor microenvironment and overcoming immune escape. J. Immunother. Cancer 2019, 7, 224.
Yang, X.; Gao, L.; Guo, Q.; Li, Y. J.; Ma, Y.; Yang, J.; Gong, C. Y.; Yi, C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res. 2020, 13, 2579–2594.
Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.
Suthiwangcharoen, N.; Li, T.; Li, K.; Thompson, P.; You, S. J.; Wang, Q. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res. 2011, 4, 483–493.
Ingato, D.; Edson, J. A.; Zakharian, M.; Kwon, Y. J. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano 2018, 12, 9568–9577.
Wang, H. J.; Bremner, D. H.; Wu, K. H.; Gong, X. R.; Fan, Q.; Xie, X. T.; Zhang, H. M.; Wu, J. Z.; Zhu, L. M. Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer. Chem. Eng. J. 2020, 382, 122848.
El Andaloussi, S.; Mäger, I.; Breakefield, X. O.; Wood, M. J. A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357.
Liu, C.; Feng, Q.; Sun, J. S. Lipid nanovesicles by microfluidics: Manipulation, synthesis, and drug delivery. Adv. Mater. 2019, 31, 1804788.
Xie, F.; Zhou, X. X.; Fang, M. Y.; Li, H. Y.; Tu, Y. F.; Zhang, L.; Zhou, F. F. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv. Sci. 2019, 6, 1901779.
Wang, X. Y.; Lu, Z. G.; Zhang, J. M.; Zhao, B. C.; Wang, J. Z.; Shen, J.; Niu, Y. W.; Xiao, Z. B.; Liu, G. Y.; Hao, J. F. et al. Cationic nano-fragrance with sustained release property for neuroregulation. J. Biomed. Nanotechnol. 2020, 16, 344–351.
Lu, M.; Huang, Y. Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 2020, 242, 119925.
Zhang, X. D.; Wang, C.; Wang, J. Q.; Hu, Q. Y.; Langworthy, B.; Ye, Y. Q.; Sun, W. J.; Lin, J.; Wang, T. F.; Fine, J. et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv. Mater. 2018, 30, 1707112.
Théry, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009, 9, 581–593.
Lv, P.; Liu, X.; Chen, X. M.; Liu, C.; Zhang, Y.; Chu, C. C.; Wang, J. Q.; Wang, X. Y.; Chen, X. Y.; Liu, G. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: A versatile platform for cancer virotherapy. Nano Lett. 2019, 19, 2993–3001.
Zhang, P. F.; Liu, G.; Chen, X. Y. Nanobiotechnology: Cell membrane-based delivery systems. Nano Today 2017, 13, 7–9.
Jang, S. C.; Kim, O. Y.; Yoon, C. M.; Choi, D. S.; Roh, T. Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y. K.; Gho, Y. S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013, 7, 7698–7710.
Zhang, P. F.; Zhang, L.; Qin, Z. N.; Hua, S. H.; Guo, Z. D.; Chu, C. C.; Lin, H. R.; Zhang, Y.; Li, W. G.; Zhang, X. Z. et al. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv. Mater. 2018, 30, 1705350.
Liu, X.; Liu, C.; Zheng, Z. Z.; Chen, S. Y.; Pang, X.; Xiang, X. C.; Tang, J. X.; Ren, E.; Chen, Y. Z.; You, M. et al. Vesicular antibodies: A bioactive multifunctional combination platform for targeted therapeutic delivery and cancer immunotherapy. Adv. Mater. 2019, 31, 1808294.
Li, L. Y.; Miao, Q. W.; Meng, F. Q.; Li, B. Q.; Xue, T. Y.; Fang, T. L.; Zhang, Z. R.; Zhang, J. X.; Ye, X. Y.; Kang, Y. et al. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Theranostics 2021, 11, 6033–6043.
Zhang, X. D.; Kang, Y.; Wang, J. Q.; Yan, J. J.; Chen, Q.; Cheng, H.; Huang, P.; Gu, Z. Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes. Adv. Mater. 2020, 32, 1907692.
Tee, J. K.; Yip, L. X.; Tan, E. S.; Santitewagun, S.; Prasath, A.; Ke, P. C.; Ho, H. K.; Leong, D. T. Nanoparticles’ interactions with vasculature in diseases. Chem. Soc. Rev. 2019, 48, 5381–5407.
Thommen, D. S.; Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 2018, 33, 547–562.
Anderson, K. G.; Stromnes, I. M.; Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: A case for synergistic therapies. Cancer Cell 2017, 31, 311–325.
Chen, D. S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330.
Wei, S. C.; Duffy, C. R.; Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018, 8, 1069–1086.
Daillère, R.; Vétizou, M.; Waldschmitt, N.; Yamazaki, T.; Isnard, C.; Poirier-Colame, V.; Duong, C. P. M.; Flament, C.; Lepage, P.; Roberti, M. P. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 2016, 45, 931–943.
Davis, D. M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol. 2007, 7, 238–243.
Zhao, P.; Wang, P.; Dong, S. Y.; Zhou, Z. M.; Cao, Y. G.; Yagita, H.; He, X.; Zheng, S. G.; Fisher, S. J.; Fujinami, R. S. et al. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat. Biomed. Eng. 2019, 3, 292–305.
Rafiq, S.; Yeku, O. O.; Jackson, H. J.; Purdon, T. J.; Van Leeuwen, D. G.; Drakes, D. J.; Song, M.; Miele, M. M.; Li, Z. N.; Wang, P. et al. Targeted delivery of a PD-1-blocking scFV by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 2018, 36, 847–856.
Noy, R.; Pollard, J. W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.
Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.
Xia, Y. Q.; Rao, L.; Yao, H. M.; Wang, Z. L.; Ning, P. B.; Chen, X. Y. Engineering macrophages for cancer immunotherapy and drug delivery. Adv. Mater. 2020, 32, 2002054.
Xiao, T. T.; Hu, W.; Fan, Y.; Shen, M. W.; Shi, X. Y. Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics 2021, 11, 7057–7071.
McLane, L. M.; Abdel-Hakeem, M. S.; Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 2019, 37, 457–495.
Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Phys. 2019, 234, 8509–8521.
Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 2005, 23, 23–68.
Croft, M. Co-stimulatory members of the TNFR family: Keys to effective t-cell immunity? Nat. Rev. Immunol. 2003, 3, 609–620.
Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 2009, 9, 271–285.
Russell, J. H.; Ley, T. J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 2002, 20, 323–370.
Voskoboinik, I.; Whisstock, J. C.; Trapani, J. A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015, 15, 388–400.
Sitkovsky, M. V. Lessons from the A2A adenosine receptor antagonist-enabled tumor regression and survival in patients with treatment-refractory renal cell cancer. Cancer Discov. 2020, 10, 16–19.
Leone, R. D.; Sun, I. M.; Oh, M. H.; Sun, I. H.; Wen, J. Y.; Englert, J.; Powell, J. D. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol., Immunother. 2018, 67, 1271–1284.