Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering (SERS) sensing, photocatalysis, and photovoltaic applications. However, the long-term maintenance and use of photo-induced vacancy defects remain elusive, because of their rapid self-healing upon air exposure. In this study, we demonstrate that photo-induced oxygen vacancy (PIVO) defects can be stabilized by the photoexcitation of metal–organic framework (MOF) materials, which is crucial for SERS analysis. The PIVO defects in MOF materials are stable for at least two weeks in the ambient atmosphere, owing to the combination of steric hindrance and electron delocalization around vacancy defects, which significantly contrasts the short lifetime (within minutes) of PIVO defects in metal-oxide semiconductors. With the formation of stable PIVO defects, a prominent SERS enhancement surpassing that of pristine MOFs is achieved, accompanied with a reduced limit of detection by three orders of magnitude. Moreover, the additional SERS enhancement rendered by PIVO defects can be stably retained and is effective for monitoring various small molecules, such as dopamine and bisphenol A.
Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945–950.
Li, Y. F.; Aschauer, U.; Chen, J.; Selloni, A. Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 2014, 47, 3361–3368.
Maletinsky, P.; Hong, S.; Grinolds, M. S.; Hausmann, B.; Lukin, M. D.; Walsworth, R. L.; Loncar, M.; Yacoby, A. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 2012, 7, 320–324.
Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.
Wang, X. T.; Shi, W. X.; Wang, S. X.; Zhao, H. W.; Lin, J.; Yang, Z.; Chen, M.; Guo, L. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J. Am. Chem. Soc. 2019, 141, 5856–5862.
Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.
Tao, J. G.; Luttrell, T.; Batzill, M. A two-dimensional phase of TiO2 with a reduced bandgap. Nat. Chem. 2011, 3, 296–300.
Zhou, Z. H.; Liu, J.; Long, R.; Li, L. Q.; Guo, L. J.; Prezhdo, O. V. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics. J. Am. Chem. Soc. 2017, 139, 6707–6717.
Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 2017, 29, 1604797.
Song, G.; Gong, W. B.; Cong, S.; Zhao, Z. G. Ultrathin two-dimensional nanostructures: Surface defects for morphology-driven enhanced semiconductor SERS. Angew. Chem., Int. Ed. 2021, 133, 5565–5571.
Cong, S.; Yuan, Y. Y.; Chen, Z. G.; Hou, J. Y.; Yang, M.; Su, Y. L.; Zhang, Y. Y.; Li, L.; Li, Q. W.; Geng, F. X. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.
Ben-Jaber, S.; Peveler, W. J.; Quesada-Cabrera, R.; Cortes, E.; Sotelo-Vazquez, C.; Abdul-Karim, N.; Maier, S. A.; Parkin, I. P. Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat. Commun. 2016, 7, 12189.
Onda, K.; Li, B.; Petek, H. Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates. Phys. Rev. B 2004, 70, 045415.
Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 2012, 112, 673–674.
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–organic framework materials as chemical sensors. Chem. Rev. 2011, 112, 1105–1125.
Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal–organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.
He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core–shell noble-metal@metal–organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.
Sugikawa, K.; Nagata, S.; Furukawa, Y.; Kokado, K.; Sada, K. Stable and functional gold nanorod composites with a metal–organic framework crystalline shell. Chem. Mater. 2013, 25, 2565–2570.
Horiuchi, Y.; Tatewaki, K.; Mine, S.; Kim, T. H.; Lee, S. W.; Matsuoka, M. Linker defect engineering for effective reactive site formation in metal–organic framework photocatalysts with a MIL-125(Ti) architecture. J. Catal. 2020, 392, 119–125.
Aubrey, M. L.; Wiers, B. M.; Andrews, S. C.; Sakurai, T.; Reyes-Lillo, S. E.; Hamed, S. M.; Yu, C. J.; Darago, L. E.; Mason, J. A.; Baeg, J. O. et al. Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat. Mater. 2018, 17, 625–632.
Huang, Q. W.; Tian, S. Q.; Zeng, D. W.; Wang, X. X.; Song, W. L.; Li, Y. Y.; Xiao, W.; Xie, C. S. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catal. 2013, 3, 1477–1485.
Bangle, R.; Sampaio, R. N.; Troian-Gautier, L.; Meyer, G. J. Surface grafting of Ru(II) diazonium-based sensitizers on metal oxides enhances alkaline stability for solar energy conversion. ACS Appl. Mater. Interfaces 2018, 10, 3121–3132.
Gao, P.; Li, S. G.; Bu, X. N.; Dang, S. S.; Liu, Z. Y.; Wang, H.; Zhong, L. S.; Qiu, M. H.; Yang, C. G.; Cai, J. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017, 9, 1019–1024.
Kang, J. X.; Zhang, Y.; Chai, Z. W.; Qiu, X. Y.; Cao, X. Z.; Zhang, P.; Teobaldi, G.; Liu, L. M.; Guo, L. Amorphous domains in black titanium dioxide. Adv. Mater. 2021, 33, 2100407.
Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.
Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B: Environ. 2018, 228, 87–96.
Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.
Xiao, C.; Qin, X. M.; Zhang, J.; An, R.; Xu, J.; Li, K.; Cao, B. X.; Yang, J. L.; Ye, B. J.; Xie, Y. High thermoelectric and reversible p–n–p conduction type switching integrated in dimetal chalcogenide. J. Am. Chem. Soc. 2012, 134, 18460–18466.
Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.
Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974.
De La Fuente-Fernández, R.; Ruth, T. J.; Sossi, V.; Schulzer, M.; Calne, D. B.; Stoessl, A. J. Expectation and dopamine release: Mechanism of the placebo effect in parkinson's disease. Science 2001, 293, 1164–1166.
Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J. Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 2007, 107, 274–302.
Ciubuc, J. D.; Bennet, K. E.; Qiu, C.; Alonzo, M.; Durrer, W. G.; Manciu, F. S. Raman computational and experimental studies of dopamine detection. Biosensors 2017, 7, 43.
Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Rajh, T. SERS of semiconducting nanoparticles (TiO2 hybrid composites). J. Am. Chem. Soc. 2009, 131, 6040–6041.
Alessandri, I.; Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921–14981.
Lombardi, J. R.; Birke, R. L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 2009, 42, 734–742.
Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.