AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stabilizing photo-induced vacancy defects in MOF matrix for high-performance SERS detection

Hongzhao Sun1,2Ge Song1,2Wenbin Gong2,5Weibang Lu1,2Shan Cong1,2,3( )Zhigang Zhao1,2,4( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences, Suzhou 215123, China
Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China
School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
Show Author Information

Graphical Abstract

The unique configuration of metal–organic framework matrices as a model material forstabilizing photo-induced oxygen vacancy defects, towards critically enhanced surface-enhanced Raman scattering performance.

Abstract

Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering (SERS) sensing, photocatalysis, and photovoltaic applications. However, the long-term maintenance and use of photo-induced vacancy defects remain elusive, because of their rapid self-healing upon air exposure. In this study, we demonstrate that photo-induced oxygen vacancy (PIVO) defects can be stabilized by the photoexcitation of metal–organic framework (MOF) materials, which is crucial for SERS analysis. The PIVO defects in MOF materials are stable for at least two weeks in the ambient atmosphere, owing to the combination of steric hindrance and electron delocalization around vacancy defects, which significantly contrasts the short lifetime (within minutes) of PIVO defects in metal-oxide semiconductors. With the formation of stable PIVO defects, a prominent SERS enhancement surpassing that of pristine MOFs is achieved, accompanied with a reduced limit of detection by three orders of magnitude. Moreover, the additional SERS enhancement rendered by PIVO defects can be stably retained and is effective for monitoring various small molecules, such as dopamine and bisphenol A.

Electronic Supplementary Material

Download File(s)
12274_2022_4185_MOESM1_ESM.pdf (2.1 MB)

References

1

Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945–950.

2

Li, Y. F.; Aschauer, U.; Chen, J.; Selloni, A. Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 2014, 47, 3361–3368.

3

Maletinsky, P.; Hong, S.; Grinolds, M. S.; Hausmann, B.; Lukin, M. D.; Walsworth, R. L.; Loncar, M.; Yacoby, A. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 2012, 7, 320–324.

4

Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.

5

Wang, X. T.; Shi, W. X.; Wang, S. X.; Zhao, H. W.; Lin, J.; Yang, Z.; Chen, M.; Guo, L. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J. Am. Chem. Soc. 2019, 141, 5856–5862.

6

Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.

7

Tao, J. G.; Luttrell, T.; Batzill, M. A two-dimensional phase of TiO2 with a reduced bandgap. Nat. Chem. 2011, 3, 296–300.

8

Zhou, Z. H.; Liu, J.; Long, R.; Li, L. Q.; Guo, L. J.; Prezhdo, O. V. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics. J. Am. Chem. Soc. 2017, 139, 6707–6717.

9

Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 2017, 29, 1604797.

10

Song, G.; Gong, W. B.; Cong, S.; Zhao, Z. G. Ultrathin two-dimensional nanostructures: Surface defects for morphology-driven enhanced semiconductor SERS. Angew. Chem., Int. Ed. 2021, 133, 5565–5571.

11

Cong, S.; Yuan, Y. Y.; Chen, Z. G.; Hou, J. Y.; Yang, M.; Su, Y. L.; Zhang, Y. Y.; Li, L.; Li, Q. W.; Geng, F. X. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.

12
Redfield, D.; Bube, R. H. Photo-Induced Defects in Semiconductors; Cambridge University Press: Cambridge, 1996.
13

Ben-Jaber, S.; Peveler, W. J.; Quesada-Cabrera, R.; Cortes, E.; Sotelo-Vazquez, C.; Abdul-Karim, N.; Maier, S. A.; Parkin, I. P. Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat. Commun. 2016, 7, 12189.

14

Onda, K.; Li, B.; Petek, H. Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates. Phys. Rev. B 2004, 70, 045415.

15

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 2012, 112, 673–674.

16

Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–organic framework materials as chemical sensors. Chem. Rev. 2011, 112, 1105–1125.

17

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal–organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

18

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.

19

He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core–shell noble-metal@metal–organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

20

Sugikawa, K.; Nagata, S.; Furukawa, Y.; Kokado, K.; Sada, K. Stable and functional gold nanorod composites with a metal–organic framework crystalline shell. Chem. Mater. 2013, 25, 2565–2570.

21

Horiuchi, Y.; Tatewaki, K.; Mine, S.; Kim, T. H.; Lee, S. W.; Matsuoka, M. Linker defect engineering for effective reactive site formation in metal–organic framework photocatalysts with a MIL-125(Ti) architecture. J. Catal. 2020, 392, 119–125.

22

Aubrey, M. L.; Wiers, B. M.; Andrews, S. C.; Sakurai, T.; Reyes-Lillo, S. E.; Hamed, S. M.; Yu, C. J.; Darago, L. E.; Mason, J. A.; Baeg, J. O. et al. Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat. Mater. 2018, 17, 625–632.

23

Huang, Q. W.; Tian, S. Q.; Zeng, D. W.; Wang, X. X.; Song, W. L.; Li, Y. Y.; Xiao, W.; Xie, C. S. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catal. 2013, 3, 1477–1485.

24

Bangle, R.; Sampaio, R. N.; Troian-Gautier, L.; Meyer, G. J. Surface grafting of Ru(II) diazonium-based sensitizers on metal oxides enhances alkaline stability for solar energy conversion. ACS Appl. Mater. Interfaces 2018, 10, 3121–3132.

25

Gao, P.; Li, S. G.; Bu, X. N.; Dang, S. S.; Liu, Z. Y.; Wang, H.; Zhong, L. S.; Qiu, M. H.; Yang, C. G.; Cai, J. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017, 9, 1019–1024.

26

Kang, J. X.; Zhang, Y.; Chai, Z. W.; Qiu, X. Y.; Cao, X. Z.; Zhang, P.; Teobaldi, G.; Liu, L. M.; Guo, L. Amorphous domains in black titanium dioxide. Adv. Mater. 2021, 33, 2100407.

27

Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

28

Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B: Environ. 2018, 228, 87–96.

29

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

30

Xiao, C.; Qin, X. M.; Zhang, J.; An, R.; Xu, J.; Li, K.; Cao, B. X.; Yang, J. L.; Ye, B. J.; Xie, Y. High thermoelectric and reversible p–n–p conduction type switching integrated in dimetal chalcogenide. J. Am. Chem. Soc. 2012, 134, 18460–18466.

31

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

32

Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974.

33

De La Fuente-Fernández, R.; Ruth, T. J.; Sossi, V.; Schulzer, M.; Calne, D. B.; Stoessl, A. J. Expectation and dopamine release: Mechanism of the placebo effect in parkinson's disease. Science 2001, 293, 1164–1166.

34

Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J. Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 2007, 107, 274–302.

35

Ciubuc, J. D.; Bennet, K. E.; Qiu, C.; Alonzo, M.; Durrer, W. G.; Manciu, F. S. Raman computational and experimental studies of dopamine detection. Biosensors 2017, 7, 43.

36

Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Rajh, T. SERS of semiconducting nanoparticles (TiO2 hybrid composites). J. Am. Chem. Soc. 2009, 131, 6040–6041.

37

Alessandri, I.; Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921–14981.

38

Lombardi, J. R.; Birke, R. L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 2009, 42, 734–742.

39

Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.

Nano Research
Pages 5347-5354
Cite this article:
Sun H, Song G, Gong W, et al. Stabilizing photo-induced vacancy defects in MOF matrix for high-performance SERS detection. Nano Research, 2022, 15(6): 5347-5354. https://doi.org/10.1007/s12274-022-4185-x
Topics:

898

Views

26

Crossref

25

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 18 November 2021
Revised: 20 January 2022
Accepted: 24 January 2022
Published: 28 March 2022
© Tsinghua University Press 2022
Return