Graphical Abstract

Developing convenient and accurate SARS-CoV-2 antigen test and serology test is crucial in curbing the global COVID-19 pandemic. In this work, we report an improved indium oxide (In2O3) nanoribbon field-effect transistor (FET) biosensor platform detecting both SARS-CoV-2 antigen and antibody. Our FET biosensors, which were fabricated using a scalable and cost-efficient lithography-free process utilizing shadow masks, consist of an In2O3 channel and a newly developed stable enzyme reporter. During the biosensing process, the phosphatase enzymatic reaction generated pH change of the solution, which was then detected and converted to electrical signal by our In2O3 FETs. The biosensors applied phosphatase as enzyme reporter, which has a much better stability than the widely used urease in FET based biosensors. As proof-of-principle studies, we demonstrate the detection of SARS-CoV-2 spike protein in both phosphate-buffered saline (PBS) buffer and universal transport medium (UTM) (limit of detection [LoD]: 100 fg/mL). Following the SARS-CoV-2 antigen tests, we developed and characterized additional sensors aimed at SARS-CoV-2 IgG antibodies, which is important to trace past infection and vaccination. Our spike protein IgG antibody tests exhibit excellent detection limits in both PBS and human whole blood ((LoD): 1 pg/mL). Our biosensors display similar detection performance in different mediums, demonstrating that our biosensor approach is not limited by Debye screening from salts and can selectively detect biomarkers in physiological fluids. The newly selected enzyme for our platform performs much better performance and longer shelf life which will lead our biosensor platform to be capable for real clinical diagnosis usage.
Goodell, J. W. COVID-19 and finance: Agendas for future research. Finance Res. Lett. 2020, 35, 101512.
Chen, N. S.; Zhou, M.; Dong, X.; Qu, J. M.; Gong, F. Y.; Han, Y.; Qiu, Y.; Wang, J. L.; Liu, Y.; Wei, Y. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513.
Wang, D. W.; Hu, B.; Hu, C.; Zhu, F. F.; Liu, X.; Zhang, J.; Wang, B. B.; Xiang, H.; Cheng, Z. S.; Xiong, Y. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069.
Zhu, N.; Zhang, D. Y.; Wang, W. L.; Li, X. W.; Yang, B.; Song, J. D.; Zhao, X.; Huang, B. Y.; Shi, W. F.; Lu, R. J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.
Lu, R. J.; Zhao, X.; Li, J.; Niu, P. H.; Yang, B.; Wu, H. L.; Wang, W. L.; Song, H.; Huang, B. Y.; Zhu, N. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574.
Bastos, M. L.; Tavaziva, G.; Abidi, S. K.; Campbell, J. R.; Haraoui, L. P.; Johnston, J. C.; Lan, Z. Y.; Law, S.; MacLean, E.; Trajman, A. et al. Diagnostic accuracy of serological tests for Covid-19: Systematic review and meta-analysis. BMJ 2020, 370, m2516.
Weissleder, R.; Lee, H.; Ko, J.; Pittet, M. J. COVID-19 diagnostics in context. Sci. Transl. Med. 2020, 12, eabc1931.
Liu, G. Q.; Rusling J. F. COVID-19 antibody tests and their limitations. ACS Sens. 2021, 6, 593–612.
Noh, J. Y.; Yoon, S. W.; Kim, D. J.; Lee, M. S.; Kim, J. H.; Na, W.; Song, D.; Jeong, D. G.; Kim, H. K. Simultaneous detection of severe acute respiratory syndrome, Middle East respiratory syndrome, and related bat coronaviruses by real-time reverse transcription PCR. Arch. Virol. 2017, 162, 1617–1623.
Chan, J. F. W.; Yip, C. C. Y.; To, K. K. W.; Tang, T. H. C.; Wong, S. C. Y.; Leung, K. H.; Fung, A. Y. F.; Ng, A. C. K.; Zou, Z. J.; Tsoi, H. W. et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J. Clin. Microbiol. 2020, 58, e00310–20.
Fathi-Hafshejani, P.; Azam, N.; Wang, L.; Kuroda, M.A.; Hamilton M.C.; Hasim, S.; Mahjouri-Samani, M. Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2). ACS Nano 2021, 15(7), 11461–11469.
Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519–522.
Ishikawa, F. N.; Chang, H. K.; Curreli, M.; Liao, H. I.; Olson, C. A.; Chen, P. C.; Zhang, R.; Roberts, R. W.; Sun, R.; Cote, R. J. et al. Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 2009, 3, 1219–1224.
Wang, B.; Zhao, C.; Wang, Z.; Yang, K. A.; Cheng, X.; Liu, W.; Yu, W.; Lin, S.; Zhao, Y.; Cheung, K. M. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 2022, 8(1), eabk0967.
Chen, Y. T.; Ren, R.; Pu, H. H.; Guo, X. R.; Chang, J. B.; Zhou, G. H.; Mao, S.; Kron, M.; Chen, J. H. Field-effect transistor biosensor for rapid detection of Ebola antigen. Sci. Rep. 2017, 7, 10974.
Afsahi, S.; Lerner, M. B.; Goldstein, J. M.; Lee, J.; Tang, X. L.; Bagarozzi, D. A. Jr.; Pan, D.; Locascio, L.; Walker, A.; Barron, F. et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018, 100, 85–88.
Seo, G.; Lee, G.; Kim, M. J.; Baek, S. H.; Choi, M.; Ku, K. B.; Lee, C. S.; Jun, S.; Park, D.; Kim, H. G. et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135–5142.
Shao, W. T.; Shurin, M. R.; Wheeler, S. E.; He, X. Y.; Star, A. Rapid detection of SARS-CoV-2 antigens using high-purity semiconducting single-walled carbon nanotube-based field-effect transistors. ACS Appl. Mater. Interfaces 2021, 13, 10321–10327.
Li, C.; Curreli, M.; Lin, H.; Lei, B.; Ishikawa, F. N.; Datar, R.; Cote, R. J.; Thompson, M. E.; Zhou, C. W. Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 12484–12485.
Kim, J.; Rim, Y. S.; Chen, H.; Cao, H. H.; Nakatsuka, N.; Hinton, H. L.; Zhao, C. Z.; Andrews, A. M.; Yang, Y.; Weiss, P. S. Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography. ACS Nano 2015, 9, 4572–4582.
Liu, Q. Z.; Liu, Y. H.; Wu, F. Q.; Cao, X.; Li, Z.; Alharbi, M.; Abbas, A. N.; Amer, M. R.; Zhou, C. W. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano 2018, 12, 1170–1178.
Chang, H. K.; Ishikawa, F. N.; Zhang, R.; Datar, R.; Cote, R. J.; Thompson, M. E.; Zhou, C. W. Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems. ACS Nano 2011, 5, 9883–9891.
Zhao, C. Z.; Liu, Q. Z.; Cheung, K. M.; Liu, W. F.; Yang, Q.; Xu, X. B.; Man, T. X.; Weiss, P. S.; Zhou, C. W.; Andrews, A. M. Narrower nanoribbon biosensors fabricated by chemical lift-off lithography show higher sensitivity. ACS Nano 2021, 15, 904–915.
Liu, Q. Z.; Zhao, C. Z.; Chen, M. R.; Liu, Y. H.; Zhao, Z. Y.; Wu, F. Q.; Li, Z.; Weiss, P. S.; Andrews, A. M.; Zhou, C. W. Flexible multiplexed In2O3 nanoribbon aptamer-field-effect transistors for biosensing. iScience 2020, 23, 101469.
Nakatsuka, N.; Yang, K. A.; Abendroth, J. M.; Cheung, K. M.; Xu, X. B.; Yang, H. Y.; Zhao, C. Z.; Zhu, B. W.; Rim, Y. S.; Yang, Y. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 2018, 362, 319–324.
Schomburg, I.; Chang, A.; Placzek, S.; Söhngen, C.; Rother, M.; Lang, M.; Munaretto, C.; Ulas, S.; Stelzer, M.; Grote, A. et al. BRENDA in 2013: Integrated reactions, kinetic data, enzyme function data, improved disease classification: New options and contents in BRENDA. Nucleic Acids Res. 2013, 41, D764–D772.
Danielsson, B.; Lundström, I.; Mosbach, K.; Stiblert, L. On a new enzyme transducer combination: The enzyme transistor. Anal. Lett. 1979, 12, 1189–1199.
Alegret, S.; Bartrolí, J.; Jiménez, C.; Martínez-Fàbregas, E.; Martorell, D.; Valdés-Perezgasga, F. ISFET-based urea biosensor. Sens. Actuators B:Chem. 1993, 16, 453–457.
Boubriak, O. A.; Soldatkin, A. P.; Starodub, N. F.; Sandrovsky, A. K.; El'skaya, A. K. Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor. Sens. Actuators B:Chem. 1995, 27, 429–431.
Mu, L. Y.; Droujinine, I. A.; Rajan, N. K.; Sawtelle, S. D.; Reed M. A. Direct, rapid, and label-free detection of enzyme-substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors. Nano Lett. 2014, 14, 5315–5322.
Pijanowska, D. G.; Torbicz, W. pH-ISFET based urea biosensor. Sens. Actuators B:Chem. 1997, 44, 370–376.
Liu, Q. Z.; Aroonyadet, N.; Song, Y.; Wang, X. L.; Cao, X.; Liu, Y. H.; Cong, S.; Wu, F. Q.; Thompson, M. E.; Zhou, C. W. Highly sensitive and quick detection of acute myocardial infarction biomarkers using In2O3 nanoribbon biosensors fabricated using shadow masks. ACS Nano 2016, 10, 10117–10125.
Aroonyadet, N.; Wang, X. L.; Song, Y.; Chen, H. T.; Cote, R. J.; Thompson, M. E.; Datar, R. H.; Zhou, C. W. Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay. Nano Lett. 2015, 15, 1943–1951.
Nannipieri, P.; Ceccanti, B.; Cervelli, S.; Sequi, P. Stability and kinetic properties of humus-urease complexes. Soil Biol. Biochem. 1978, 10, 143–147.
Poźniak, G.; Krajewska, B.; Trochimczuk, W. Urease immobilized on modified polysulphone membrane: Preparation and properties. Biomaterials 1995, 16, 129–134.
Reddy, K. R. C.; Kayastha, A. M. Improved stability of urease upon coupling to alkylamine and arylamine glass and its analytical use. J. Mol. Catal. B:Enzym. 2006, 38, 104–112.
Yang, Z. P.; Si, S. H.; Zhang, C. J. Study on the activity and stability of urease immobilized onto nanoporous alumina membranes. Micropor. Mesopor. Mater. 2008, 111, 359–366.
Yang, D.; Fan, J. H.; Cao, F. Y.; Deng, Z. J.; Pojman, J. A.; Ji, L. Immobilization adjusted clock reaction in the urea-urease-H+ reaction system. RSC Adv. 2019, 9, 3514–3519.
Ko, Y. C.; Mukaida, N.; Panyutich, A.; Voitenok, N. N.; Matsushima, K.; Kawai, T.; Kasahara, T. A sensitive enzyme-linked immunosorbent assay for human interleukin-8. J. Immunol. Methods 1992, 149, 227–235.
Daniilidou, M.; Tsolaki, M.; Giannakouros, T.; Nikolakaki, E. Detection of elevated antibodies against SR protein kinase 1 in the serum of Alzheimer's disease patients. J. Neuroimmunol. 2011, 238, 67–72.
Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.
Chen, R. J.; Zhang, Y. G.; Wang, D. W.; Dai, H. J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838–3839.
Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036.
Wang, Y. H.; Huang, K. J.; Wu, X. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review. Biosens. Bioelectron. 2017, 97, 305–316.