AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Plasmonic anisotropic gold nanorods: Preparation and biomedical applications

Jiamin Ye1,§Qiang Wen2,§Ying Wu3Qinrui Fu3Xuan Zhang3Jianmin Wang1( )Shi Gao2( )Jibin Song3( )
Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China
Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130033, China
MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China

§ Jiamin Ye and Qiang Wen contributed equally to this work.

Show Author Information

Graphical Abstract

Schematic illustration of the fabrication of anisotropic gold nanorods (AAuNR) nanoparticles for biomedical applications, classified into different types of inorganic and organic-based AAuNRs for imaging and therapy applications.

Abstract

Gold nanorods (AuNRs) have attracted tremendous interest in biomedical fields due to their unique optical properties, tunable surface plasmon, and excellent biocompatibility. Their biomedical applications are mainly influenced by near-infrared (NIR) light, which can guarantee deep penetration into human tissues with minimal loss. However, traditional single AuNRs are unable to carry medicine into the lesion regions. Furthermore, it is difficult for AuNR nanoparticles to be implemented in multimodal imaging-guided synergetic therapy, which has limited the application of AuNRs in the field of theranostics. In recent years, researchers have made great strides in modifying gold nanorods into nanomaterials for the integration of diagnosis and treatment. After modifying different functionalized shells on the outsides of AuNRs, heterostructure AuNRs known as anisotropic gold nanorod (AAuNR) nanoparticles possessed bioimaging and cancer therapy abilities, as well as a variety of other amazing biomedical applications. In addition, AAuNR nanoparticles can combine biomedical imaging and therapy into one system to achieve multimodal bioimaging guided synergetic therapy. In this study, we presented a current review of the latest progress of different types of AAuNRs nanoparticles and their biomedical applications. Furthermore, the challenges and future development trends of AAuNR nanoparticles in the biomedical fields are discussed.

References

1

Zhou, J. J.; Jiang, Y. Y.; Hou, S.; Upputuri, P. K.; Wu, D.; Li, J. C.; Wang, P.; Zhen, X.; Pramanik, M.; Pu, K. Y. et al. Compact plasmonic blackbody for cancer theranosis in the Near-Infrared II window. ACS Nano 2018, 12, 2643–2651.

2

Zhou, C. Y.; Zhang, L.; Sun, T.; Zhang, Y.; Liu, Y. D.; Gong, M. F.; Xu, Z. S.; Du, M. M.; Liu, Y.; Liu, G. et al. Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv. Mater. 2021, 33, 2006532.

3

Zhu, R.; Su, L. C.; Dai, J. Y.; Li, Z. W.; Bai, S. M.; Li, Q. Q.; Chen, X. Y.; Song, J. B.; Yang, H. H. Biologically responsive plasmonic assemblies for second near-infrared window photoacoustic imaging-guided concurrent chemo-immunotherapy. ACS Nano 2020, 14, 3991–4006.

4

Dai, X. G.; Zhao, X. Y.; Liu, Y. J.; Chen, B. B.; Ding, X. K.; Zhao, N. N.; Xu, F. J. Controlled synthesis and surface engineering of Janus chitosan-gold nanoparticles for photoacoustic imaging-guided synergistic gene/photothermal therapy. Small 2021, 17, 2006004.

5

Yu, Z. Z.; Chan, W. K.; Zhang, Y.; Tan, T. T. Y. Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials 2021, 269, 120459.

6

Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem., Int. Ed. 2014, 53, 1756–1789.

7

He, T.; Jiang, C.; He, J.; Zhang, Y. F.; He, G.; Wu, J. Y. Z.; Lin, J.; Zhou, X.; Huang, P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable Duplex-Imaging-Guided NIR-II photothermal-chemodynamic therapy. Adv. Mater. 2021, 33, 2008540.

8

Fang, S.; Lin, J.; Li, C. X.; Huang, P.; Hou, W. X.; Zhang, C. L.; Liu, J. J.; Huang, S. S.; Luo, Y. X.; Fan, W. P. et al. Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy. Small 2017, 13, 1602580.

9

Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R. Q.; Shao, L.; Wang, J. F. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453.

10

Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

11

Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.

12

Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 2012, 64, 190–199.

13

Fu, Q. R.; Zhu, R.; Song, J. B.; Yang, H. H.; Chen, X. Y. Photoacoustic imaging: Contrast agents and their biomedical applications. Adv. Mater. 2019, 31, 1805875.

14

Au, M. T.; Shi, J. Y.; Fan, Y. D.; Ni, J. G.; Wen, C. Y.; Yang, M. Nerve growth factor-targeted molecular theranostics based on molybdenum disulfide nanosheet-coated gold nanorods (MoS2-AuNR) for osteoarthritis pain. ACS Nano 2021, 15, 11711–11723.

15

Wang, S. S.; Chen, R. H.; Yu, Q.; Huang, W. C.; Lai, P. X.; Tang, J. X.; Nie, L. M. Near-infrared plasmon-boosted heat/oxygen enrichment for reversing rheumatoid arthritis with metal/semiconductor composites. ACS Appl. Mater. Interfaces 2020, 12, 45796–45806.

16

Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472.

17

Li, Q. Q.; Ge, X. G.; Ye, J. M.; Li, Z.; Su, L. C.; Wu, Y.; Yang, H. H.; Song, J. B. Dual ratiometric SERS and photoacoustic core-satellite nanoprobe for quantitatively visualizing hydrogen peroxide in inflammation and cancer. Angew. Chem., Int. Ed. 2021, 60, 7323–7332.

18

Chen, X. Y.; Zhang, Q.; Li, J. L.; Yang, M.; Zhao, N. N.; Xu, F. J. Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano 2018, 12, 5646–5656.

19

Muhammed, M. A. H.; Döblinger, M. Rodríguez-Fernández, J. Switching plasmons: Gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J. Am. Chem. Soc. 2015, 137, 11666–11677.

20

Ye, J. M.; Li, Z.; Fu, Q. R.; Li, Q. Q.; Zhang, X.; Su, L. C.; Yang, H. H.; Song, J. B. Quantitative photoacoustic diagnosis and precise treatment of inflammation in vivo using activatable theranostic nanoprobe. Adv. Funct. Mater. 2020, 30, 2001771.

21

Li, X. M.; Zhao, T. C.; Lu, Y.; Wang, P. Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Degradation-restructuring induced anisotropic epitaxial growth for fabrication of asymmetric diblock and triblock mesoporous nanocomposites. Adv. Mater. 2017, 29, 1701652.

22

Jeon, J. W.; Zhou, J.; Geldmeier, J. A.; Ponder, J. F. Jr.; Mahmoud, M. A.; El-Sayed, M.; Reynolds, J. R.; Tsukruk, V. V. Dual-responsive reversible plasmonic behavior of core-shell nanostructures with pH-sensitive and electroactive polymer shells. Chem. Mater. 2016, 28, 7551–7563.

23

Zhang, H. Y.; Hao, C. L.; Qu, A. H.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Heterostructures of MOFs and nanorods for multimodal imaging. Adv. Funct. Mater. 2018, 28, 1805320.

24

Fu, Q. R.; Ye, J. M.; Wang, J. J.; Liao, N. S.; Feng, H. J.; Su, L. C.; Ge, X. G.; Yang, H. H.; Song, J. B. NIR-II photoacoustic reporter for biopsy-free and real-time assessment of wilson's disease. Small 2021, 17, 2008061.

25

Wang, Z.; Shao, D.; Chang, Z. M.; Lu, M. M.; Wang, Y. S.; Yue, J.; Yang, D.; Li, M. Q.; Xu, Q. B.; Dong, W. F. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano 2017, 11, 12732–12741.

26

Tsai, M. F.; Chang, S. H. G.; Cheng, F. Y.; Shanmugam, V.; Cheng, Y. S.; Su, C. H.; Yeh, C. S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7, 5330–5342.

27

Sun, M. Z.; Xu, L. G.; Ma, W.; Wu, X. L.; Kuang, H.; Wang, L. B.; Xu, C. L. Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Adv. Mater. 2016, 28, 898–904.

28

Wei, H.; Yan, X. H.; Niu, Y. J.; Li, Q.; Jia, Z. L.; Xu, H. X. Plasmon-exciton interactions: Spontaneous emission and strong coupling. Adv. Funct. Mater. 2021, 31, 2100889.

29

Yang, X. Q.; Lu, Y.; Liu, Y.; Wang, J.; Shao, L.; Wang, J. F. Heterostructures built through site-selective deposition on anisotropic plasmonic metal nanocrystals and their applications. Small Struct. 2021, 2, 2100101.

30

Ortiz, N.; Hong, S. J.; Fonseca, F.; Liu, Y.; Wang, G. F. Anisotropic overgrowth of palladium on gold nanorods in the presence of salicylic acid family additives. J. Phys. Chem. C 2017, 121, 1876–1883.

31

Zhu, X. Z.; Yip, H. K.; Zhuo, X. L.; Jiang, R. B.; Chen, J. L.; Zhu, X. M.; Yang, Z.; Wang, J. F. Realization of red plasmon shifts up to ~900 nm by AgPd-tipping elongated Au nanocrystals. J. Am. Chem. Soc. 2017, 139, 13837–13846.

32

Ortiz, N.; Zoellner, B.; Hong, S. J.; Ji, Y.; Wang, T.; Liu, Y.; Maggard, P. A.; Wang, G. F. Harnessing hot electrons from Near IR light for hydrogen production using Pt-end-capped-AuNRs. ACS Appl. Mater. Interfaces 2017, 9, 25962–25969.

33

Forcherio, G. T.; Baker, D. R.; Boltersdorf, J.; Leff, A. C.; McClure, J. P.; Grew, K. N.; Lundgren, C. A. Targeted deposition of platinum onto gold nanorods by plasmonic hot electrons. J. Phys. Chem. C 2018, 122, 28901–28909.

34

Jung, S.; Liu, L. C.; Shuford, K. L.; Park, S. Surface plasmon coupling on linked Au-Pt nanorods. J. Phys. Chem. C 2013, 117, 3141–3145.

35

Fennell, J.; He, D. S.; Tanyi, A. M.; Logsdail, A. J.; Johnston, R. L.; Li, Z. Y.; Horswell, S. L. A selective blocking method to control the overgrowth of Pt on Au nanorods. J. Am. Chem. Soc. 2013, 135, 6554–6561.

36

Guo, X.; Ye, W.; Zhu, R.; Wang, W. X.; Xie, F.; Sun, H. Y.; Zhao, Q.; Ding, Y.; Yang, J. Gold nanorod-templated synthesis of polymetallic hollow nanostructures with enhanced electrocatalytic performance. Nanoscale 2014, 6, 11732–11737.

37

Zheng, Z. K.; Tachikawa, T.; Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 2015, 137, 948–957.

38

Zheng, Z. K.; Tachikawa, T.; Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 2014, 136, 6870–6873.

39

DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887–7891.

40

Jovic, V.; Chen, W. T.; Sun-Waterhouse, D.; Blackford, M. G.; Idriss, H.; Waterhouse, G. I. N. Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol-water mixtures. J. Catal. 2013, 305, 307–317.

41

Boltersdorf, J.; Forcherio, G. T.; McClure, J. P.; Baker, D. R.; Leff, A. C.; Lundgren, C. Visible light-promoted plasmon resonance to induce “hot” hole transfer and photothermal conversion for catalytic oxidation. J. Phys. Chem. C 2018, 122, 28934–28948.

42

Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117.

43

Liu, Q. Q.; Kim, Y. J.; Im, G. B.; Zhu, J. T.; Wu, Y. Z.; Liu, Y. J.; Bhang, S. H. Inorganic nanoparticles applied as functional therapeutics. Adv. Funct. Mater. 2021, 31, 2008171.

44

Fang, Y.; Zheng, G. F.; Yang, J. P.; Tang, H. S.; Zhang, Y. F.; Kong, B.; Lv, Y. Y.; Xu, C. J.; Asiri, A. M.; Zi, J. et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angew. Chem., Int. Ed. 2014, 53, 5366–5370.

45

Xiong, B.; Zhou, R.; Hao, J. R.; Jia, Y. H.; He, Y.; Yeung, E. S. Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au-Ag core-shell nanoparticles. Nat. Commun. 2013, 4, 1708.

46

Xiang, Y. J.; Wu, X. C.; Liu, D. F.; Jiang, X. Y.; Chu, W. G.; Li, Z. Y.; Ma, Y.; Zhou, W. Y.; Xie, S. S. Formation of rectangularly shaped Pd/Au bimetallic nanorods: Evidence for competing growth of the pd shell between the {110} and {100} side facets of Au nanorods. Nano Lett. 2006, 6, 2290–2294.

47

Ray, P. C.; Fan, Z.; Crouch, R. A.; Sinha, S. S.; Pramanik, A. Nanoscopic optical rulers beyond the FRET distance limit: Fundamentals and applications. Chem. Soc. Rev. 2014, 43, 6370–6404.

48

Guo, X.; Zhang, Q.; Sun, Y. H.; Zhao, Q.; Yang, J. Lateral etching of core-shell Au@metal nanorods to metal-tipped Au nanorods with improved catalytic activity. ACS Nano 2012, 6, 1165–1175.

49

Chen, K. C.; Lin, C. C.; Vela, J.; Fang, N. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes. Anal. Chem. 2015, 87, 4096–4099.

50

Ye, X. S.; Shi, H.; He, X. X.; Wang, K. M.; Li, D.; Qiu, P. C. Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy. J. Mater. Chem. B 2014, 2, 3667–3673.

51

Jiang, X. M.; Wang, L. M.; Ji, Y. L.; Tang, J. L.; Tian, X.; Cao, M. J.; Li, J. X.; Bi, S. Y.; Wu, X. C.; Chen, C. Y. et al. Interference of steroidogenesis by gold nanorod core/silver shell nanostructures: Implications for reproductive toxicity of silver nanomaterials. Small 2017, 13, 1602855.

52

Jing, H.; Zhang, Q. F.; Large, N.; Yu, C. M.; Blom, D. A.; Nordlander, P.; Wang, H. Tunable plasmonic nanoparticles with catalytically active high-index facets. Nano Lett. 2014, 14, 3674–3682.

53

Zhang, Q. F.; Jing, H.; Li, G. G.; Lin, Y.; Blom, D. A.; Wang, H. Intertwining roles of silver ions, surfactants, and reducing agents in gold nanorod overgrowth: Pathway switch between silver underpotential deposition and gold-silver codeposition. Chem. Mater. 2016, 28, 2728–2741.

54

Kankala, R. K.; Han, Y. H.; Na, J.; Lee, C. H.; Sun, Z. Q.; Wang, S. B.; Kimura, T.; Ok, Y. S.; Yamauchi, Y.; Chen, A. Z. et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020, 32, 1907035.

55

Chen, S. Y.; Chen, M. J.; Yang, J. F.; Zeng, X. Q.; Zhou, Y. B.; Yang, S.; Yang, R. H.; Yuan, Q.; Zheng, J. Design and engineering of hypoxia and acidic pH dual-stimuli-responsive intelligent fluorescent nanoprobe for precise tumor imaging. Small 2021, 17, 2100243.

56

Cui, X. Y.; Cheng, W. L.; Han, X. J. Lipid bilayer modified gold nanorod@mesoporous silica nanoparticles for controlled drug delivery triggered by near-infrared light. J. Mater. Chem. B 2018, 6, 8078–8084.

57

Chapman, B. S.; Wu, W. C.; Li, Q. C.; Holten-Andersen, N.; Tracy, J. B. Heteroaggregation approach for depositing magnetite nanoparticles onto silica-overcoated gold nanorods. Chem. Mater. 2017, 29, 10362–10368.

58

Hinman, J. G.; Eller, J. R.; Lin, W.; Li, J.; Li, J. H.; Murphy, C. J. Oxidation state of capping agent affects spatial reactivity on gold nanorods. J. Am. Chem. Soc. 2017, 139, 9851–9854.

59

Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

60

Wang, S. S.; Lv, J.; Meng, S. S.; Tang, J. X.; Nie, L. M. Recent advances in nanotheranostics for treat-to-target of rheumatoid arthritis. Adv. Healthc. Mater. 2020, 9, 1901541.

61

Liu, X. D.; Chen, B.; Wang, G. G.; Ma, S.; Cheng, L.; Liu, W.; Zhou, L.; Wang, Q. Q. Controlled growth of hierarchical Bi2Se3/CdSe-Au nanorods with optimized photothermal conversion and demonstrations in photothermal therapy. Adv. Funct. Mater. 2021, 31, 2104424.

62

Mei, C. M.; Wang, N.; Zhu, X. Q.; Wong, K. H.; Chen, T. F. Photothermal-controlled nanotubes with surface charge flipping ability for precise synergistic therapy of triple-negative breast cancer. Adv. Funct. Mater. 2018, 28, 1805225.

63

Chen, X. F.; Song, J. B.; Chen, X. Y.; Yang, H. H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101.

64

Zheng, T.; Zhou, T. C.; Feng, X. T.; Shen, J.; Zhang, M.; Sun, Y. Enhanced plasmon-induced resonance energy transfer (PIRET)-mediated photothermal and photodynamic therapy guided by photoacoustic and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2019, 11, 31615–31626.

65

Jiang, S. S.; Huang, K.; Qu, J. L.; Lin, J.; Huang, P. Cancer nanotheranostics in the second near-infrared window. VIEW 2021, 2, 20200075.

66

Shan, B. B.; Wang, H. T.; Li, L. H.; Zhou, G. Z.; Wen, Y.; Chen, M. Y.; Li, M. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for in vivo photothermal tumor ablation in the second near-infrared biowindow. Theranostics 2020, 10, 11656–11672.

67

Wu, Y.; Ali, M. R. K.; Dong, B.; Han, T. G.; Chen, K. C.; Chen, J.; Tang, Y.; Fang, N.; Wang, F. J.; El-Sayed, M. A. Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration. ACS Nano 2018, 12, 9279–9290.

68

Rožič, B.; Fresnais, J.; Molinaro, C.; Calixte, J.; Umadevi, S.; Lau-Truong, S.; Felidj, N.; Kraus, T.; Charra, F.; Dupuis, V. et al. Oriented gold nanorods and gold nanorod chains within smectic liquid crystal topological defects. ACS Nano 2017, 11, 6728–6738.

69

Rong, Y.; Song, L. P.; Si, P.; Zhang, L.; Lu, X. F.; Zhang, J. W.; Nie, Z. H.; Huang, Y. J.; Chen, T. Macroscopic assembly of gold nanorods into superstructures with controllable orientations by anisotropic affinity interaction. Langmuir 2017, 33, 13867–13873.

70

Tadepalli, S.; Yim, J.; Madireddi, K.; Luan, J. Y.; Naik, R. R.; Singamaneni, S. Gold nanorod-mediated photothermal enhancement of the biocatalytic activity of a polymer-encapsulated enzyme. Chem. Mater. 2017, 29, 6308–6314.

71

Yan, J.; Hou, S.; Ji, Y. L.; Wu, X. C. Heat-enhanced symmetry breaking in dynamic gold nanorod oligomers: The importance of interface control. Nanoscale 2016, 8, 10030–10034.

72

Liu, Z. H.; Wang, T. T.; Nanda, S. S.; Yi, D. K.; Lee, E. C. Plasmonic organic bulk-heterojunction solar cells based on hydrophobic gold nanorod insertion into active layers. J. Appl. Polym. Sci. 2018, 135, 45920.

73

Wang, Q. R.; Zhang, J.; Sang, X.; Zhang, D.; Shi, Q.; Li, S. H.; Wang, W. J. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods. J. Lumin. 2018, 204, 284–288.

74

Kwon, Y.; Choi, Y.; Jang, J.; Yoon, S.; Choi, J. NIR laser-responsive PNIPAM and gold nanorod composites for the engineering of thermally reactive drug delivery nanomedicine. Pharmaceutics 2020, 12, 204.

75

Zhao, Y. Q.; Sun, Y. J.; Zhang, Y. D.; Ding, X. K.; Zhao, N. N.; Yu, B. R.; Zhao, H.; Duan, S.; Xu, F. J. Well-defined gold nanorod/polymer hybrid coating with inherent antifouling and photothermal bactericidal properties for treating an infected hernia. ACS Nano 2020, 14, 2265–2275.

76

Wang, J.; Zhu, C. H.; Han, J.; Han, N.; Xi, J. Q.; Fan, L.; Guo, R. Controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 12323–12330.

77

Yang, W.; Lim, D. K. Recent advances in the synthesis of intra-nanogap Au plasmonic nanostructures for bioanalytical applications. Adv. Mater. 2020, 32, 2002219.

78

Wu, Y.; Su, L. C.; Yuan, M.; Chen, T.; Ye, J. M.; Jiang, Y. F.; Song, J. B.; Yang, H. H. In vivo X-ray triggered catalysis of H2 generation for cancer synergistic gas radiotherapy. Angew. Chem., Int. Ed. 2021, 60, 12868–12875.

79

Choi, J.; Yang, J.; Park, J.; Kim, E.; Suh, J. S.; Huh, Y. M.; Haam, S. Specific near-IR absorption imaging of glioblastomas using integrin-targeting gold nanorods. Adv. Funct. Mater. 2011, 21, 1082–1088.

80

Xue, Y.; Dong, B.; Liu, X. H.; Wang, F. C.; Yang, J.; Liu, D. B. Using selenium-conjugated polyethylene glycol to enhance the stability of gold nanoparticles in biologically relevant samples. Sci. China Chem. 2019, 62, 280–286.

81

Gao, X. N.; Jiang, L. L.; Hu, B.; Kong, F. P.; Liu, X. J.; Xu, K. H.; Tang, B. Au-se-bond-based nanoprobe for imaging MMP-2 in tumor cells under a high-thiol environment. Anal. Chem. 2018, 90, 4719–4724.

82

Hu, B.; Cheng, R. R.; Liu, X. J.; Pan, X. H.; Kong, F. P.; Gao, W.; Xu, K. H.; Tang, B. A nanosensor for in vivo selenol imaging based on the formation of Au-Se bonds. Biomaterials 2016, 92, 81–89.

83

Hu, B.; Kong, F. P.; Gao, X. N.; Jiang, L. L.; Li, X. F.; Gao, W.; Xu, K. H.; Tang, B. Avoiding thiol compound interference: A nanoplatform based on high-fidelity Au-Se bonds for biological applications. Angew. Chem., Int. Ed. 2018, 57, 5306–5309.

84

Pan, W.; Liu, X. H.; Wan, X. Y.; Li, J.; Li, Y. H.; Lu, F.; Li, N.; Tang, B. Rapid preparation of Au-Se-peptide nanoprobe based on a freezing method for bioimaging. Anal. Chem. 2019, 91, 15982–15987.

85

Tao, J.; Su, X. D.; Li, J.; Shi, W. H.; Teng, Z. G.; Wang, L. H. Intricately structured mesoporous organosilica nanoparticles: Synthesis strategies and biomedical applications. Biomater. Sci. 2021, 9, 1609–1626.

86

He, T.; Yuan, Y. Y.; Jiang, C.; Blum, N. T.; He, J.; Huang, P.; Lin, J. Light-triggered transformable ferrous ion delivery system for photothermal primed chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 6047–6054.

87

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

88

Su, H. Y.; Tian, Q.; Price, C. A. H.; Xu, L.; Qian, K.; Liu, J. Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis. Nano Today 2020, 31, 100834.

89

Guo, H. B.; Yi, S.; Feng, K.; Xia, Y. Q.; Qu, X. W.; Wan, F.; Chen, L.; Zhang, C. L. In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chem. Eng. J. 2021, 403, 126432.

90

Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 2018, 11, 3294–3305.

91

Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater. 2018, 28, 1705451.

92

Zeng, J. Y.; Wang, X. S.; Zhang, M. K.; Li, Z. H.; Gong, D.; Pan, P.; Huang, L.; Cheng, S. X.; Cheng, H.; Zhang, X. Z. Universal porphyrinic metal-organic framework coating to various nanostructures for functional integration. ACS Appl. Mater. Interfaces 2017, 9, 43143–43153.

93

Shang, W. T.; Zeng, C. T.; Du, Y.; Hui, H.; Liang, X.; Chi, C. W.; Wang, K.; Wang, Z. L.; Tian, J. Core-shell gold nanorod@metal-organic framework nanoprobes for multimodality diagnosis of glioma. Adv. Mater. 2017, 29, 1604381.

94

Song, J. B.; Huang, P.; Duan, H. W.; Chen, X. Y. Plasmonic vesicles of amphiphilic nanocrystals: Optically active multifunctional platform for cancer diagnosis and therapy. Acc. Chem. Res. 2015, 48, 2506–2515.

95

Song, J. B.; Niu, G.; Chen, X. Y. Amphiphilic-polymer-guided plasmonic assemblies and their biomedical applications. Bioconjugate Chem. 2017, 28, 105–114.

96

Liu, Y. J.; Li, Y. C.; He, J.; Duelge, K. J.; Lu, Z. Y.; Nie, Z. H. Entropy-driven pattern formation of hybrid vesicular assemblies made from molecular and nanoparticle amphiphiles. J. Am. Chem. Soc. 2014, 136, 2602–2610.

97

Song, J. B.; Cheng, L.; Liu, A. P.; Yin, J.; Kuang, M.; Duan, H. W. Plasmonic vesicles of amphiphilic gold nanocrystals: Self-assembly and external-stimuli-triggered destruction. J. Am. Chem. Soc. 2011, 133, 10760–10763.

98

Song, J. B.; Huang, P.; Chen, X. Y. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes. Nat. Protoc. 2016, 11, 2287–2299.

99

Song, J. B.; Yang, X. Y.; Jacobson, O.; Huang, P.; Sun, X. L.; Lin, L. S.; Yan, X. F.; Niu, G.; Ma, Q. J.; Chen, X. Y. Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv. Mater. 2015, 27, 4910–4917.

100

Yue, L. D.; Yang, K. K.; Wei, J. W.; Xu, M. Z.; Sun, C.; Ding, Y. F.; Yuan, Z.; Wang, S.; Wang, R. B. Supramolecular vesicles based on gold nanorods for precise control of gene therapy and deferred photothermal therapy. CCS Chem. 2021, 3, 1860–1872.

101

Song, J. B.; Yang, X. Y.; Jacobson, O.; Lin, L. S.; Huang, P.; Niu, G.; Ma, Q. J.; Chen, X. Y. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 2015, 9, 9199–9209.

102

Liu, T. J.; Tong, L. L.; Lv, N. N.; Ge, X. G.; Fu, Q. R.; Gao, S.; Ma, Q. J.; Song, J. B. Two-stage size decrease and enhanced photoacoustic performance of stimuli‐responsive polymer‐gold nanorod assembly for increased tumor penetration. Adv. Funct. Mater. 2019, 29, 1806429.

103

Ge, X. G.; Fu, Q. R.; Su, L. C.; Li, Z.; Zhang, W. M.; Chen, T.; Yang, H. H.; Song, J. B. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics 2020, 10, 4809–4821.

104

Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840–1849.

105

Tabish, T. A.; Dey, P.; Mosca, S.; Salimi, M.; Palombo, F.; Matousek, P.; Stone, N. Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy. Adv. Sci. 2020, 7, 1903441.

106

Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

107

Zhang, J. J.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Chen, P.; Pu, K. Y. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 2017, 29, 1604764.

108

Wu, Z. G.; Li, L.; Yang, Y. R.; Hu, P.; Li, Y.; Yang, S. Y.; Wang, L. V.; Gao, W. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 2019, 4, eaax0613.

109

Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

110

Gao, D. Y.; Hu, D. H.; Liu, X.; Sheng, Z. H.; Zheng, H. R. Recent advances in functional nanomaterials for photoacoustic imaging of glioma. Nanoscale Horiz. 2019, 4, 1037–1045.

111

Li, L.; Zhu, L.; Ma, C.; Lin, L.; Yao, J. J.; Wang, L. D.; Maslov, K.; Zhang, R. Y.; Chen, W. Y.; Shi, J. H. et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng. 2017, 1, 0071.

112

Kim, T.; Zhang, Q. Z.; Li, J.; Zhang, L. F.; Jokerst, J. V. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano 2018, 12, 5615–5625.

113

Fu, Q. R.; Zhang, X.; Song, J. B.; Yang, H. H. Plasmonic gold nanoagents for cancer imaging and therapy. VIEW 2021, 2, 20200149.

114

Li, H.; Zhang, P.; Smaga, L. P.; Hoffman, R. A.; Chan, J. Photoacoustic probes for ratiometric imaging of copper(II). J. Am. Chem. Soc. 2015, 137, 15628–15631.

115

Huang, X. L.; Song, J. B.; Yung, B. C.; Huang, X. H.; Xiong, Y. H.; Chen, X. Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920.

116

Shi, H.; Sun, Y. D.; Yan, R. Q.; Liu, S. L.; Zhu, L.; Liu, S.; Feng, Y. Z.; Wang, P.; He, J.; Zhou, Z. Y. et al. Magnetic semiconductor gd-doping cus nanoparticles as activatable nanoprobes for bimodal imaging and targeted photothermal therapy of gastric tumors. Nano Lett. 2019, 19, 937–947.

117

Wang, J. J.; Dong, R. F.; Wu, H. Y.; Cai, Y. P.; Ren, B. Y. A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett. 2020, 12, 11.

118

Wang, H.; Mu, X. Y.; He, H.; Zhang, X. D. Cancer radiosensitizers. Trends Pharmacol. Sci. 2018, 39, 24–48.

119

Caro, C.; Dalmases, M.; Figuerola, A.; García-Martín, M. L.; Leal, M. P. Highly water-stable rare ternary Ag-Au-Se nanocomposites as long blood circulation time X-ray computed tomography contrast agents. Nanoscale 2017, 9, 7242–7251.

120

Ma, K.; Li, Y. W.; Wang, Z. G.; Chen, Y. Z.; Zhang, X.; Chen, C. Y.; Yu, H.; Huang, J.; Yang, Z. Y.; Wang, X. F. et al. Core-shell gold nanorod@layered double hydroxide nanomaterial with highly efficient photothermal conversion and its application in antibacterial and tumor therapy. ACS Appl. Mater. Interfaces 2019, 11, 29630–29640.

121

Yang, Z. Z.; Du, Y. T.; Sun, Q.; Peng, Y. W.; Wang, R. D.; Zhou, Y.; Wang, Y. Q.; Zhang, C. L.; Qi, X. R. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano 2020, 14, 6191–6212.

122

Jokerst, J. V.; Cole, A. J.; Van de Sompel, D.; Gambhir, S. S. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 2012, 6, 10366–10377.

123

Kao, Y. C.; Han, X. M.; Lee, Y. H.; Lee, H. K.; Phan-Quang, G. C.; Lay, C. L.; Sim, H. Y. F.; Phua, V. J. X.; Ng, L. S.; Ku, C. W. et al. Multiplex surface-enhanced Raman scattering identification and quantification of urine metabolites in patient samples within 30 min. ACS Nano 2020, 14, 2542–2552.

124

Bell, S. E. J.; Charron, G.; Cortés, E.; Kneipp, J.; de la Chapelle, M. L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem., Int. Ed. 2020, 59, 5454–5462.

125

Song, J. B.; Yang, X. Y.; Yang, Z.; Lin, L. S.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Yu, G. C.; Dai, Y. L.; Jacobson, O. et al. Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano 2017, 11, 6102–6113.

126

Yuan, A. M.; Wu, X. L.; Li, X.; Hao, C. L.; Xu, C. L.; Kuang, H. Au@gap@AuAg nanorod side-by-side assemblies for ultrasensitive SERS detection of mercury and its transformation. Small 2019, 15, 1901958.

127

Song, J. B.; Pu, L.; Zhou, J. J.; Duan, B.; Duan, H. W. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 2013, 7, 9947–9960.

128

Lee, S. H.; Jun, B. H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865.

129

Xu, L.; Wang, Y. Y.; Huang, J.; Chen, C. Y.; Wang, Z. X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031.

130

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

131

Mei, R. C.; Wang, Y. Q.; Yu, Q.; Yin, Y. C.; Zhao, R. F.; Chen, L. X. Gold nanorod array-bridged internal-standard SERS tags: From ultrasensitivity to multifunctionality. ACS Appl. Mater. Interfaces 2020, 12, 2059–2066.

132

Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011, 11, 348–354.

133

Zhang, L.; Su, H. L.; Wang, H. L.; Li, Q.; Li, X.; Zhou, C. Q.; Xu, J.; Chai, Y. M.; Liang, X. W.; Xiong, L. Q. et al. Tumor chemo-radiotherapy with rod-shaped and spherical gold nano probes: Shape and active targeting both matter. Theranostics 2019, 9, 1893–1908.

134

Yan, C. L.; Liu, D. L.; An, L.; Wang, Y. R.; Tian, Q. W.; Lin, J. M.; Yang, S. P. Magnetic-photoacoustic dual-mode probe for the visualization of H2S in colorectal cancer. Anal. Chem. 2020, 92, 8254–8261.

135

Kim, J.; Piao, Y. Z.; Hyeon, T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 2009, 38, 372–390.

136

Huang, J. F.; Zhu, Y. H.; Liu, C. X.; Zhao, Y. F.; Liu, Z. H.; Hedhili, M. N.; Fratalocchi, A.; Han, Y. Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances. Small 2015, 11, 5214–5221.

137

Zhou, Z. J.; Song, J. B.; Nie, L. N.; Chen, X. Y. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597–6626.

138

Du, B. J.; Yu, M. X.; Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 2018, 3, 358–374.

139

Zhang, Y. Z.; Cui, H. G.; Zhang, R. Q.; Zhang, H. B.; Huang, W. Nanoparticulation of prodrug into medicines for cancer therapy. Adv. Sci. 2021, 8, 2101454.

140

Guo, D. B.; Huang, Y.; Jin, X.; Zhang, C.; Zhu, X. Y. A redox-responsive, in-situ polymerized polyplatinum(IV)-coated gold nanorod as an amplifier of tumor accumulation for enhanced thermo-chemotherapy. Biomaterials 2021, 266, 120400.

141

Wu, C. S.; Wu, Y. H.; Zhu, X. H.; Zhang, J.; Liu, J. L.; Zhang, Y. Near-infrared-responsive functional nanomaterials: The first domino of combined tumor therapy. Nano Today 2021, 36, 100963.

142

Zhang, L.; Zhang, Y.; Xue, Y. N.; Wu, Y.; Wang, Q. Q.; Xue, L. J.; Su, Z. G.; Zhang, C. Transforming weakness into strength: Photothermal-therapy-induced inflammation enhanced cytopharmaceutical chemotherapy as a combination anticancer treatment. Adv. Mater. 2019, 31, 1805936.

143

Zhang, Z. J.; Wang, J.; Nie, X.; Wen, T.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Chen, C. Y. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 2014, 136, 7317–7326.

144

Ge, X. G.; Fu, Q.; Bai, L.; Chen, B.; Wang, R. J.; Gao, S.; Song, J. B. Photoacoustic imaging and photothermal therapy in the second near-infrared window. New J. Chem. 2019, 43, 8835–8851.

145

Liu, N.; O'Connor, P.; Gujrati, V.; Gorpas, D.; Glasl, S.; Blutke, A.; Walch, A.; Kleigrewe, K.; Sattler, M.; Plettenburg, O. et al. Facile synthesis of a croconaine-based nanoformulation for optoacoustic imaging and photothermal therapy. Adv. Healthc. Mater. 2021, 10, 2002115.

146

Xu, C. N.; Wang, Y. B.; Wang, E. L.; Yan, N.; Sheng, S.; Chen, J.; Lin, L.; Guo, Z. P.; Tian, H. Y.; Chen, X. S. Effective eradication of tumors by enhancing photoacoustic-imaging-guided combined photothermal therapy and ultrasonic therapy. Adv. Funct. Mater. 2021, 31, 2009314.

147

Wang, X. X.; Cao, D. W.; Tang, X. J.; Yang, J. J.; Jiang, D. Y.; Liu, M.; He, N. Y.; Wang, Z. F. Coating carbon nanosphere with patchy gold for production of highly efficient photothermal agent. ACS Appl. Mater. Interfaces 2016, 8, 19321–19332.

148

Lim, D. K.; Barhoumi, A.; Wylie, R. G.; Reznor, G.; Langer, R. S.; Kohane, D. S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett. 2013, 13, 4075–4079.

149

Aioub, M.; Panikkanvalappil, S. R.; El-Sayed, M. A. Platinum-coated gold nanorods: Efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano 2017, 11, 579–586.

150

Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.

151

Fan, W. P.; Tang, W.; Lau, J.; Shen, Z. Y.; Xie, J.; Shi, J. L.; Chen, X. Y. Breaking the depth dependence by nanotechnology-enhanced X-ray-excited deep cancer theranostics. Adv. Mater. 2019, 31, 1806381.

152

Zhong, X. Y.; Wang, X. W.; Zhan, G. T.; Tang, Y. A.; Yao, Y. Z.; Dong, Z. L.; Hou, L. Q.; Zhao, H.; Zeng, S. J.; Hu, J. et al. NaCeF4: Gd, Tb scintillator as an X-ray responsive photosensitizer for multimodal imaging-guided synchronous radio/radiodynamic therapy. Nano Lett. 2019, 19, 8234–8244.

153

Zhang, C. Y.; Yan, L.; Gu, Z. J.; Zhao, Y. L. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chem. Sci. 2019, 10, 6932–6943.

154

Chang, Y. Z.; He, L. Z.; Li, Z. B.; Zeng, L. L.; Song, Z. H.; Li, P. H.; Chan, L.; You, Y. Y.; Yu, X. F.; Chu, P. K. et al. Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy. ACS Nano 2017, 11, 4848–4858.

155

Luo, L.; Sun, W. J.; Feng, Y. S.; Qin, R. X.; Zhang, J. H.; Ding, D. D.; Shi, T. H.; Liu, X. M.; Chen, X. Y.; Chen, H. M. Conjugation of a scintillator complex and gold nanorods for dual-modal image-guided photothermal and X-ray-induced photodynamic therapy of tumors. ACS Appl. Mater. Interfaces 2020, 12, 12591–12599.

156

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

157

Song, J. B.; Zhou, J. J.; Duan, H. W. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J. Am. Chem. Soc. 2012, 134, 13458–13469.

158

Fu, Q. R.; Li, Z.; Fu, F. F.; Chen, X. Y.; Song, J. B.; Yang, H. H. Stimuli-responsive plasmonic assemblies and their biomedical applications. Nano Today 2021, 36, 101014.

159

Liu, H.; Yang, Y. Y.; Liu, Y.; Pan, J. J.; Wang, J. Q.; Man, F. Y.; Zhang, W. G.; Liu, G. Melanin-like nanomaterials for advanced biomedical applications: A versatile platform with extraordinary promise. Adv. Sci. 2020, 7, 1903129.

160

Fu, Q. R.; Li, Z.; Ye, J. M.; Li, Z.; Fu, F. F.; Lin, S. L.; Chang, C. A.; Yang, H. H.; Song, J. B. Magnetic targeted near-infrared II PA/MR imaging guided photothermal therapy to trigger cancer immunotherapy. Theranostics 2020, 10, 4997–5010.

161

Leng, C. B.; Zhang, X.; Xu, F. X.; Yuan, Y.; Pei, H.; Sun, Z. H.; Li, L.; Bao, Z. H. Engineering gold nanorod-copper sulfide heterostructures with enhanced photothermal conversion efficiency and photostability. Small 2018, 14, 1703077.

162

Yang, J.; Xie, R.; Feng, L. L.; Liu, B.; Lv, R. C.; Li, C. X.; Gai, S. L.; He, F.; Yang, P. P.; Lin, J. Hyperthermia and controllable free radical coenhanced synergistic therapy in hypoxia enabled by Near-Infrared-II light irradiation. ACS Nano 2019, 13, 13144–13160.

163

Dong, Q.; Wang, X. W.; Hu, X. X.; Xiao, L. Q.; Zhang, L.; Song, L. J.; Xu, M. L.; Zou, Y. X.; Chen, L.; Chen, Z. et al. Simultaneous application of photothermal therapy and an anti-inflammatory prodrug using pyrene-aspirin-loaded gold nanorod graphitic nanocapsules. Angew. Chem., Int. Ed. 2018, 57, 177–181.

164

Yang, L. J.; Zhou, Z. J.; Song, J. B.; Chen, X. Y. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 2019, 48, 5140–5176.

165

Wang, C.; Fan, W. P.; Zhang, Z. J.; Wen, Y.; Xiong, L.; Chen, X. Y. Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy. Adv. Mater. 2019, 31, 1904329.

166

Cheng, L.; Wang, X. W.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater. 2020, 32, 1902333.

167

Gong, F.; Yang, N. L.; Wang, X. W.; Zhao, Q.; Chen, Q.; Liu, Z.; Cheng, L. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today 2020, 32, 100851.

168

Ovais, M.; Mukherjee, S.; Pramanik, A.; Das, D.; Mukherjee, A.; Raza, A.; Chen, C. Y. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment. Adv. Mater. 2020, 32, 2000055.

169

Luo, G.; Chen, W. H.; Lei, Q.; Qiu, W. X.; Liu, Y. X.; Cheng, Y. J.; Zhang, X. Z. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 2016, 26, 4339–4350.

170

Liu, J. J.; Liang, H. N.; Li, M. H.; Luo, Z.; Zhang, J. X.; Guo, X. M.; Cai, K. Y. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018, 157, 107–124.

171

Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Liu, S.; Niu, G. L.; Guo, L.; Zhang, H. Y.; Wang, P. F. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale 2016, 8, 13067–13077.

172

Chen, T.; Su, L. C.; Ge, X. G.; Zhang, W. M.; Li, Q. Q.; Zhang, X.; Ye, J. M.; Lin, L. S.; Song, J. B.; Yang, H. H. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 2020, 13, 3268–3277.

173

Lin, H. X.; Yang, L. J.; Zhang, X.; Liu, G. M.; Zhuo, S. M.; Chen, J. X.; Song, J. B. Emerging low-dimensional nanoagents for bio-microimaging. Adv. Funct. Mater. 2020, 30, 2003147.

174

Wang, X. H.; Wang, X. Y.; Jin, S. X.; Muhammad, N.; Guo, Z. J. Stimuli-responsive therapeutic metallodrugs. Chem. Rev. 2019, 119, 1138–1192.

175

Huang, Y.; Huang, P.; Lin, J. Plasmonic gold nanovesicles for biomedical applications. Small Methods 2019, 3, 1800394.

176

Wang, J.; Liu, J.; Liu, Y.; Wang, L. M.; Cao, M. J.; Ji, Y. L.; Wu, X. C.; Xu, Y. Y.; Bai, B.; Miao, Q. et al. Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided therapy. Adv. Mater. 2016, 28, 8950–8958.

177

Wei, W. B.; Bai, F.; Fan, H. Y. Oriented gold nanorod arrays: Self-assembly and optoelectronic applications. Angew. Chem., Int. Ed. 2019, 58, 11956–11966.

178

Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. USA 2017, 114, E3110–E3118.

179

Jia, Y. P.; Shi, K.; Liao, J. F.; Peng, J. R.; Hao, Y.; Qu, Y.; Chen, L. J.; Liu, L.; Yuan, X.; Qian, Z. Y. et al. Effects of cetyltrimethylammonium bromide on the toxicity of gold nanorods both in vitro and in vivo: Molecular origin of cytotoxicity and inflammation. Small Methods 2020, 4, 1900799.

180

Zarska, M.; Sramek, M.; Novotny, F.; Havel, F.; Babelova, A.; Mrazkova, B.; Benada, O.; Reinis, M.; Stepanek, I.; Musilek, K. et al. Biological safety and tissue distribution of (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods. Biomaterials 2018, 154, 275–290.

181

Xie, L.; Zhang, X. J.; Chu, C. C.; Dong, Y. Q.; Zhang, T. Z.; Li, X. Y.; Liu, G.; Cai, W.; Han, S. X. Preparation, toxicity reduction and radiation therapy application of gold nanorods. J. Nanobiotechnol. 2021, 19, 454.

182

Zhang, L.; Su, H. L.; Cai, J. L.; Cheng, D. F.; Ma, Y. J.; Zhang, J. P.; Zhou, C. Q.; Liu, S. Y.; Shi, H. C.; Zhang, Y. J. et al. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 2016, 10, 10404–10417.

183

Li, H. Y.; Yan, J.; Meng, D. J.; Cai, R.; Gao, X. S.; Ji, Y. L.; Wang, L. M.; Chen, C. Y.; Wu, X. C. Gold nanorod-based nanoplatform catalyzes constant NO generation and protects from cardiovascular injury. ACS Nano 2020, 14, 12854–12865.

184

Ploetz, E.; Engelke, H.; Lächelt, U.; Wuttke, S. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv. Funct. Mater. 2020, 30, 1909062.

185

Zhu, H.; Wang, Y.; Chen, C.; Ma, M. R.; Zeng, J. F.; Li, S. Z.; Xia, Y. S.; Gao, M. Y. Monodisperse dual plasmonic Au@Cu2-xE (E=S, Se) core@shell supraparticles: Aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano 2017, 11, 8273–8281.

186

Huang, L.; Ao, L. J.; Hu, D. H.; Wang, W.; Sheng, Z. H.; Su, W. Magneto-plasmonic nanocapsules for multimodal-imaging and magnetically guided combination cancer therapy. Chem. Mater. 2016, 28, 5896–5904.

187

Xu, C.; Chen, F.; Valdovinos, H. F.; Jiang, D. W.; Goel, S.; Yu, B.; Sun, H. Y.; Barnhart, T. E.; Moon, J. J.; Cai, W. B. Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials 2018, 165, 56–65.

188

Ye, J. M.; Fu, Q. R.; Liu, L. T.; Chen, L. L.; Zhang, X.; Li, Q. Q.; Li, Z.; Su, L. C.; Zhu, R.; Song, J. B. et al. Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors. Sci. China Chem. 2021, 64, 2218–2229.

189

Chen, K.; Peng, X.; Dang, M.; Tao, J.; Ma, J. B.; Li, Z. J.; Zheng, L. H.; Su, X. D.; Wang, L. H.; Teng, Z. G. General thermodynamic-controlled coating method to prepare Janus mesoporous nanomotors for improving tumor penetration. ACS Appl. Mater. Interfaces 2021, 13, 51297–51311.

Nano Research
Pages 6372-6398
Cite this article:
Ye J, Wen Q, Wu Y, et al. Plasmonic anisotropic gold nanorods: Preparation and biomedical applications. Nano Research, 2022, 15(7): 6372-6398. https://doi.org/10.1007/s12274-022-4191-z
Topics:

1165

Views

22

Crossref

23

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 28 November 2021
Revised: 21 January 2022
Accepted: 25 January 2022
Published: 29 April 2022
© Tsinghua University Press 2022
Return