AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells

Xing Meng1,§Yifan Chen1,§Fan Yang1Jieqi Zhang3Guozheng Shi1Yannan Zhang1Haodong Tang4Wei Chen4Yang Liu1Lin Yuan1Shaojuan Li2Kai Wang4Qi Chen3Zeke Liu1,2( )Wanli Ma1( )
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Changchun 130033, China
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Suzhou 215123, China
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

§ Xing Meng and Yifan Chen contributed equally to this work.

Show Author Information

Graphical Abstract

An interfacial layer of CsPbI3 quantum dots (QDs) was inserted between the active layer and organic polymer hole-transporting layer for PbS QD solar cells. The relative soft perovskite can mediate the interface and form favorable energy level alignment, improving charge extraction and reducing interfacial charge recombination.

Abstract

Conjugated polymers have been explored as promising hole-transporting layer (HTL) in lead sulfide (PbS) quantum dot (QD) solar cells. The fine regulation of the inorganic/organic interface is pivotal to realize high device performance. In this work, we propose using CsPbI3 QDs as the interfacial layer between PbS QD active layer and organic polymer HTL. The relative soft perovskite can mediate the interface and form favorable energy level alignment, improving charge extraction and reducing interfacial charge recombination. As a result, the photovoltaic performance can be efficiently improved from 10.50% to 12.32%. This work may provide new guidelines to the device structural design of QD optoelectronics by integrating different solution-processed semiconductors.

Electronic Supplementary Material

Download File(s)
12274_2022_4195_MOESM1_ESM.pdf (739.3 KB)

References

1

Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

2

Liu, Y.; Shi, G. Z.; Liu, Z. K.; Ma, W. L. Toward printable solar cells based on PbX colloidal quantum dot inks. Nanoscale Horiz. 2021, 6, 8–23.

3

Voznyy, O.; Sutherland, B. R.; Ip, A. H.; Zhitomirsky, D.; Sargent, E. H. Engineering charge transport by heterostructuring solution-processed semiconductors. Nat. Rev. Mater. 2017, 2, 17026.

4

Lee, H.; Song, H. J.; Shim, M.; Lee, C. Towards the commercialization of colloidal quantum dot solar cells: Perspectives on device structures and manufacturing. Energy Environ. Sci. 2020, 13, 404–431.

5

Gan, J.; Yu, M.; Hoye, R. L. Z.; Musselman, K. P.; Li, Y.; Liu, X.; Zheng, Y.; Zu, X.; Li, S.; MacManus-Driscoll, J. L. et al. Defects, photophysics and passivation in Pb-based colloidal quantum dot photovoltaics. Mater. Today Nano 2021, 13, 100101.

6

McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

7

Luther, J. M.; Gao, J. B.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707.

8

Gao, J. B.; Perkins, C. L.; Luther, J. M.; Hanna, M. C.; Chen, H. Y.; Semonin, O. E.; Nozik, A. J.; Ellingson, R. J.; Beard, M. C. N-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 2011, 11, 3263–3266.

9

Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

10

Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582.

11

Chuang, C. H. M.; Brown, P. R.; Bulovic, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

12

Lan, X. Z.; Voznyy, O.; Kiani, A.; De Arquer, F. P. G.; Abbas, A. S.; Kim, G. H.; Liu, M. X.; Yang, Z. Y.; Walters, G.; Xu, J. X. et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.

13

Liu, M. X.; Voznyy, O.; Sabatini, R.; De Arquer, F. P. G.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.

14

Xu, J. X.; Voznyy, O.; Liu, M. X.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; De Arquer, F. P. G. et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13, 456–462.

15

Liu, M. X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96–101.

16

Choi, M. J.; De Arquer, F. P. G.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M. X.; Sun, B.; Biondi, M. et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 2020, 11, 103.

17

Sun, B.; Johnston, A.; Xu, C.; Wei, M. Y.; Huang, Z. R.; Jiang, Z.; Zhou, H.; Gao, Y. J.; Dong, Y. T.; Ouellette, O. et al. Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule 2020, 4, 1542–1556.

18

Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; De Arquer, F. P. G. et al. A tuned alternating D-A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater. 2020, 32, 2004985.

19

Hu, L.; Zhao, Q.; Huang, S. J.; Zheng, J. H.; Guan, X. W.; Patterson, R.; Kim, J.; Shi, L.; Lin, C. H.; Lei, Q. et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 2021, 12, 466.

20

Fakharuddin, A.; Schmidt-Mende, L.; Garcia-Belmonte, G.; Jose, R.; Mora-Sero, I. Interfaces in perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700623.

21

Correa-Baena, J. P.; Tress, W.; Domanski, K.; Anaraki, E. H.; Turren-Cruz, S. H.; Roose, B.; Boix, P. P.; Grätzel, M.; Saliba, M.; Abate, A. et al. Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ. Sci. 2017, 10, 1207–1212.

22

Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S. S.; Rothhardt, D.; Hörmann, U.; Amir, Y.; Redinger, A. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 2019, 12, 2778–2788.

23

Lu, K. Y.; Wang, Y. J.; Liu, Z. K.; Han, L.; Shi, G. Z.; Fang, H. H.; Chen, J.; Ye, X. C.; Chen, S.; Yang, F. et al. High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via "solvent-curing". Adv. Mater. 2018, 30, 1707572.

24

Wang, Y. J.; Liu, Z. K.; Huo, N. J.; Li, F.; Gu, M. F.; Ling, X. F.; Zhang, Y. N.; Lu, K. Y.; Han, L.; Fang, H. H. et al. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 2019, 10, 5136.

25

Shi, G. Z.; Wang, H. B.; Zhang, Y. H.; Cheng, C.; Zhai, T. S.; Chen, B. T.; Liu, X. Y.; Jono, R.; Mao, X. N.; Liu, Y. et al. The effect of water on colloidal quantum dot solar cells. Nat. Commun. 2021, 12, 4381.

26

Hu, L.; Lei, Q.; Guan, X. W.; Patterson, R.; Yuan, J. Y.; Lin, C. H.; Kim, J.; Geng, X.; Younis, A.; Wu, X. X. et al. Optimizing surface chemistry of PbS colloidal quantum dot for highly efficient and stable solar cells via chemical binding. Adv. Sci. 2021, 8, 2003138.

27

Ding, C.; Liu, F.; Zhang, Y. H.; Hayase, S.; Masuda, T.; Wang, R. X.; Zhou, Y.; Yao, Y. F.; Zou, Z. G.; Shen, Q. Passivation strategy of reducing both electron and hole trap states for achieving high-efficiency PbS quantum-dot solar cells with power conversion efficiency over 12%. ACS Energy Lett. 2020, 5, 3224–3236.

28

Wang, R. L.; Shang, Y. Q.; Kanjanaboos, P.; Zhou, W. J.; Ning, Z. J.; Sargent, E. H. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130–1143.

29

Chen, J. X.; Zheng, S. Y.; Jia, D. L.; Liu, W. L.; Andruszkiewicz, A.; Qin, C. C.; Yu, M.; Liu, J. H.; Johansson, E. M. J.; Zhang, X. L. Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. ACS Energy Lett. 2021, 6, 1970–1979.

30

Aqoma, H.; Mubarok, M. A.; Lee, W.; Hadmojo, W. T.; Park, C.; Ahn, T. K.; Ryu, D. Y.; Jang, S. Y. Improved processability and efficiency of colloidal quantum dot solar cells based on organic hole transport layers. Adv. Energy Mater. 2018, 8, 1800572.

31

Xue, Y.; Yang, F.; Yuan, J. Y.; Zhang, Y. N.; Gu, M. F.; Xu, Y. L.; Ling, X. F.; Wang, Y.; Li, F. C.; Zhai, T. S. et al. Toward scalable PbS quantum dot solar cells using a tailored polymeric hole conductor. ACS Energy Lett. 2019, 4, 2850–2858.

32

Mubarok, M. A.; Wibowo, F. T. A.; Aqoma, H.; Krishna, N. V.; Lee, W.; Ryu, D. Y.; Cho, S.; Jung, I. H.; Jang, S. Y. PbS-based quantum dot solar cells with engineered π-conjugated polymers achieve 13% efficiency. ACS Energy Lett. 2020, 5, 3452–3460.

33

Mubarok, M. A.; Aqoma, H.; Wibowo, F. T. A.; Lee, W.; Kim, H. M.; Ryu, D. Y.; Jeon, J. W.; Jang, S. Y. Molecular engineering in hole transport π-conjugated polymers to enable high efficiency colloidal quantum dot solar cells. Adv. Energy Mater. 2020, 10, 1902933.

34

Baek, S. W.; Jun, S.; Kim, B.; Proppe, A. H.; Ouellette, O.; Voznyy, O.; Kim, C.; Kim, J.; Walters, G.; Song, J. H. et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 2019, 4, 969–976.

35

Zhang, Y. N.; Kan, Y. Y.; Gao, K.; Gu, M. F.; Shi, Y.; Zhang, X. L.; Xue, Y.; Zhang, X. N.; Liu, Z. K.; Zhang, Y. et al. Hybrid quantum dot/organic heterojunction: A route to improve open-circuit voltage in PbS colloidal quantum dot solar cells. ACS Energy Lett. 2020, 5, 2335–2342.

36

Baek, S. W.; Molet, P.; Choi, M. J.; Biondi, M.; Ouellette, O.; Fan, J.; Hoogland, S.; de Arquer, F. P. G.; Mihi, A.; Sargent, E. H. Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Adv. Mater. 2019, 31, 1901745.

37

Gao, F.; Ren, S. Q.; Wang, J. P. The renaissance of hybrid solar cells: Progresses, challenges, and perspectives. Energy Environ. Sci. 2013, 6, 2020–2040.

38

Liu, Z. K.; Yuan, J. Y.; Hawks, S. A.; Shi, G. Z.; Lee, S. T.; Ma, W. L. Photovoltaic devices based on colloidal PbX quantum dots: Progress and prospects. Sol. RRL 2017, 1, 1600021.

39

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

40

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

41

Gan, J. T.; He, J. X.; Hoye, R. L. Z.; Mavlonov, A.; Raziq, F.; MacManus-Driscoll, J. L.; Wu, X. Q.; Li, S.; Zu, X. T.; Zhan, Y. Q. et al. Α-CsPbI3 colloidal quantum dots: Synthesis, photodynamics, and photovoltaic applications. ACS Energy Lett. 2019, 4, 1308–1320.

42

Yuan, J. Y.; Hazarika, A.; Zhao, Q.; Ling, X. F.; Moot, T.; Ma, W. L.; Luther, J. M. Metal halide perovskites in quantum dot solar cells: Progress and prospects. Joule 2020, 4, 1160–1185.

43

Chen, J. X.; Jia, D. L.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. L. Emerging perovskite quantum dot solar cells: Feasible approaches to boost performance. Energy Environ. Sci. 2021, 14, 224–261.

44

Duan, L. P.; Hu, L.; Guan, X. W.; Lin, C. H.; Chu, D. W.; Huang, S. J.; Liu, X. G.; Yuan, J. Y.; Wu, T. Quantum dots for photovoltaics: A tale of two materials. Adv. Energy Mater. 2021, 11, 2100354.

45

Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

46

Lanigan-Atkins, T.; He, X.; Krogstad, M. J.; Pajerowski, D. M.; Abernathy, D. L.; Xu, G. N. M. N.; Xu, Z. J.; Chung, D. Y.; Kanatzidis, M. G.; Rosenkranz, S. et al. Two-dimensional overdamped fluctuations of the soft perovskite lattice in CsPbBr3. Nat. Mater. 2021, 20, 977–983.

47

Wang, Y. J.; Lu, K. Y.; Han, L.; Liu, Z. K.; Shi, G. Z.; Fang, H. H.; Chen, S.; Wu, T.; Yang, F.; Gu, M. F. et al. In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 2018, 30, 1704871.

48

Yuan, J. Y.; Ling, X. F.; Yang, D.; Li, F. C.; Zhou, S. J.; Shi, J. W.; Qian, Y. L.; Hu, J. X.; Sun, Y. S.; Yang, Y. G. et al. Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2018, 2, 2450–2463.

49

Wheeler, L. M.; Sanehira, E. M.; Marshall, A. R.; Schulz, P.; Suri, M.; Anderson, N. C.; Christians, J. A.; Nordlund, D.; Sokaras, D.; Kroll, T. et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 2018, 140, 10504–10513.

50

Ling, X. F.; Yuan, J. Y.; Zhang, X. L.; Qian, Y. L.; Zakeeruddin, S. M.; Larson, B. W.; Zhao, Q.; Shi, J. W.; Yang, J. C.; Ji, K. et al. Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 2020, 32, 2001906.

51

Lu, K. Y.; Wang, Y. J.; Yuan, J. Y.; Cui, Z. Q.; Shi, G. Z.; Shi, S. H.; Han, L.; Chen, S.; Zhang, Y. N.; Ling, X. F. et al. Efficient PbS quantum dot solar cells employing a conventional structure. J. Mater. Chem. A 2017, 5, 23960–23966.

52

Wang, Z.; Gan, J. T.; Liu, X. D.; Shi, H. B.; Wei, Q.; Zeng, Q. G.; Qiao, L.; Zheng, Y. H. Over 1 μm electron-hole diffusion lengths in CsPbI2Br for high efficient solar cells. J. Power Sources 2020, 454, 227913.

53

Li, F.; Liu, Y.; Shi, G. Z.; Chen, W.; Guo, R. J.; Liu, D.; Zhang, Y. H.; Wang, Y. J.; Meng, X.; Zhang, X. L. et al. Matrix manipulation of directly-synthesized PbS quantum dot inks enabled by coordination engineering. Adv. Funct. Mater. 2021, 31, 2104457.

Nano Research
Pages 6121-6127
Cite this article:
Meng X, Chen Y, Yang F, et al. Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells. Nano Research, 2022, 15(7): 6121-6127. https://doi.org/10.1007/s12274-022-4195-8
Topics:

1003

Views

14

Crossref

17

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 19 December 2021
Revised: 17 January 2022
Accepted: 24 January 2022
Published: 19 March 2022
© Tsinghua University Press 2022
Return