AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C−C cross-coupling of primary and secondary alcohols

Zhijun Li1( )Yuying Chen1Xiaowen Lu1Honghong Li1Leipeng Leng1Tinglei zhang1J. Hugh Horton1,2
Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
Department of Chemistry, Queen’s University, Kingston K7L 3N6, Canada
Show Author Information

Graphical Abstract

Herein, we report a solid-state transformation strategy to fabricate Co single atom catalysts by introducing Co species from commercial Co2O3 powders into nitrogen-doped carbon support. Its exceptional catalytic performance in the direct C–C cross-coupling of primary and secondary alcohols was experimentally validated and further confirmed by density functional theory calculations.

Abstract

Atomic engineering of single atom catalysts (SACs) with high-density available active sites and optimized electronic properties can substantially boost catalytic efficacy. Herein, we report a solid-state transformation strategy to access Co SACs by introducing Co species from commercial Co2O3 powders into nitrogen-doped carbon support. The catalyst exhibited excellent catalytic activity, with a turnover frequency (TOF) of 2,307 h−1 and yield of 95%, in the direct C−C cross-coupling of benzyl alcohol and 1-phenylethanol (1 atm O2@80 °C) to yield chalcone. Density functional theory (DFT) calculations demonstrate the coordination environment and electronic metal–support interaction impact the catalytic pathway. In particular, a wide substrate scope and a broad functional-group tolerance of this SAC were validated, and the employment of this strategy for large-scale synthesis was also shown to be feasible. This work might shed light on the facile and scalable synthesis of highly active, selective, and stable SACs for heterogeneous catalysis.

Electronic Supplementary Material

Download File(s)
12274_2022_4196_MOESM1_ESM.pdf (7.4 MB)

References

1

Lo, J. C.; Gui, J. H.; Yabe, Y.; Pan, C. M.; Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 2014, 516, 343–348.

2

Xia, Y.; Lu, G.; Liu, P.; Dong, G. B. Catalytic activation of carbon–carbon bonds in cyclopentanones. Nature 2016, 539, 546–550.

3

Zhuang, C. L.; Zhang, W.; Sheng, C. Q.; Zhang, W. N.; Xing, C. G.; Miao, Z. Y. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810.

4

Shimizu, K.; Sato, R.; Satsuma, A. Direct C–C cross-coupling of secondary and primary alcohols catalyzed by a γ-alumina-supported silver subnanocluster. Angew. Chem., Int. Ed. 2009, 48, 3982–3986.

5

Liu, X.; Ding, R. S.; He, L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. C–C cross-coupling of primary and secondary benzylic alcohols using supported gold-based bimetallic catalysts. ChemSusChem 2013, 6, 604–608.

6

Biswas, S.; Mullick, K.; Chen, S. Y.; Gudz, A.; Carr, D. M.; Mendoza, C.; Angeles-Boza, A. M.; Suib, S. L. Facile access to versatile functional groups from alcohol by single multifunctional reusable catalyst. Appl. Catal. B: Environ. 2017, 203, 607–614.

7

Rej, S.; Ano, Y.; Chatani, N. Bidentate directing groups: An efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 2020, 120, 1788–1887.

8

Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013, 46, 1673–1681.

9

Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

10

Zheng, Y. N.; Zhang, R.; Zhang, L.; Gu, Q. E.; Qiao, Z. A. A resol-assisted cationic coordinative co-assembly approach to mesoporous ABO3 perovskite oxides with rich oxygen vacancy for enhanced hydrogenation of furfural to furfuryl alcohol. Angew. Chem., Int. Ed. 2021, 60, 4774–4781.

11

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

12

Feng, D. Y.; Dong, Y. B.; Zhang, L. L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. A. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem., Int. Ed. 2020, 59, 19503–19509.

13

Gao, T. N.; Wang, T.; Wu, W.; Liu, Y. L.; Huo, Q. S.; Qiao, Z. A.; Dai, S. Solvent-induced self-assembly strategy to synthesize well-defined hierarchically porous polymers. Adv. Mater. 2019, 31, 1806254.

14

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

15

Morgan, K.; Goguet, A.; Hardacre, C. Metal redispersion strategies for recycling of supported metal catalysts: A perspective. ACS Catal. 2015, 5, 3430–3445.

16

Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. E. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

17

Peng, B.; Liu, H. T.; Liu, Z. Y.; Duan, X. F.; Huang, Y. Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 2021, 12, 2837–2847.

18

Liu, D. Q.; Barbar, A.; Najam, T.; Javed, M. S.; Shen, J.; Tsiakaras, P.; Cai, X. K. Single noble metal atoms doped 2D materials for catalysis. Appl. Catal. B: Environ. 2021, 297, 120389.

19
Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. in press, https://doi.org/10.1002/anie.202114450.
20

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

21

Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

22
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. in press, https://doi.org/10.1016/j.apmate.2021.10.004.
23

Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

24
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. in press, https://doi.org/10.1007/s12274-021-3794-0.
25

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

26

He, J.; Li, N.; Li, Z. G.; Zhong, M.; Fu, Z. X.; Liu, M.; Yin, J. C.; Shen, Z. R.; Li, W.; Zhang, J. J. et al. Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2103597.

27

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal−oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

28

Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

29

Li, Z. J.; Lu, X. W.; Sun, W. W.; Leng, L. P.; Zhang, M. Y.; Li, H. H.; Bai, L.; Yuan, D. D.; Horton, J. H.; Xu, Q. et al. One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin. Appl. Catal. B:Environ. 2021, 298, 120535.

30

Li, Z. J.; Wei, W.; Li, H. H.; Li, S. H.; Leng, L. P.; Zhang, M. Y.; Horton, J. H.; Wang, D. S.; Sun, W. W.; Guo, C. M. et al. Low-temperature synthesis of single palladium atoms supported on defective hexagonal boron nitride nanosheet for chemoselective hydrogenation of cinnamaldehyde. ACS Nano 2021, 15, 10175–10184.

31

Li, Z. J.; Zhang, M. Y.; Zhang, L. L.; Dong, X. L.; Leng, L. P.; Horton, J. H.; Wang, J. Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Res. 2022, 15, 1338–1346.

32

Gu, J.; Jian, M. Z.; Huang, L.; Sun, Z. H.; Li, A. W.; Pan, Y.; Yang, J. Z.; Wen, W.; Zhou, W.; Lin, Y. et al. Synergizing metal−support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 2021, 16, 1141–1149.

33

Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Liu, W.; Wang, X. Q.; Cheong, W. C. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

34

Jones, J.; Xiong, H. F.; Delariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

35

Huang, Z. W.; Ban, T.; Zhang, Y.; Wang, L. P.; Guo, S. F.; Chang, C. R.; Jing, G. H. Boosting the thermal stability and catalytic performance by confining Ag single atom sites over antimony-doped tin oxide via atom trapping. Appl. Catal. B: Environ. 2021, 283, 119625.

36

Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

37

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

38

Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

39

Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. E. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

40

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

41

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

42

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

43

Blüchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.

44

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

45

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

46

Dronskowski, R.; Bloechl, P. E. Crystal orbital hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624.

47

Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

48

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

49

Xiong, C.; Tian, L.; Xiao, C. C.; Xue, Z. G.; Zhou, F. Y.; Zhou, H.; Zhao, Y. F.; Chen, M.; Wang, Q. P.; Qu, Y. T. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.

50

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

51

Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.

52

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

53

Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

54

Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

55

Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, H. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093.

56

Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc. 2005, 127, 9374–9375.

57

Tan, D. W.; Li, H. X.; Zhu, D. L.; Li, H. Y.; Young, D. J.; Yao, J. L.; Lang, J. P. Ligand-controlled copper(I)-catalyzed cross-coupling of secondary and primary alcohols to α-alkylated ketones, pyridines, and quinolines. Org. Lett. 2018, 20, 608–611.

58

Zhang, L. L.; Wang, W. T.; Wang, A. Q.; Cui, Y. T.; Yang, X. F.; Huang, Y. Q.; Liu, X. Y.; Liu, W. G.; Son, J. Y.; Oji, H. et al. Aerobic oxidative coupling of alcohols and amines over Au–Pd/resin in water: Au/Pd molar ratios switch the reaction pathways to amides or imines. Green Chem. 2013, 15, 2680–2684.

59

Zhou, M. X.; Zhang, L. L.; Miller, J. T.; Yang, X. F.; Liu, X. Y.; Wang, A. Q.; Zhang, T. Hydrogen auto-transfer under aerobic oxidative conditions: Efficient synthesis of saturated ketones by aerobic C–C cross-coupling of primary and secondary alcohols catalyzed by a Au6Pd/resin catalyst. Chin. J. Catal. 2016, 37, 1764–1770.

60

Zhang, L. L.; Wang, A. Q.; Wang, W. T.; Huang, Y. Q.; Liu, X. Y.; Miao, S.; Liu, J. Y.; Zhang, T. Co–N–C catalyst for C–C coupling reactions: On the catalytic performance and active sites. ACS Catal. 2015, 5, 6563–6572.

Nano Research
Pages 4023-4031
Cite this article:
Li Z, Chen Y, Lu X, et al. Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C−C cross-coupling of primary and secondary alcohols. Nano Research, 2022, 15(5): 4023-4031. https://doi.org/10.1007/s12274-022-4196-7
Topics:

988

Views

19

Crossref

20

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 02 January 2022
Revised: 23 January 2022
Accepted: 25 January 2022
Published: 24 February 2022
© Tsinghua University Press 2022
Return