AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Direct transformation of ZIF-8 into hollow porous carbons and hollow carbon composites

Lingqi Huang1,2Zhiyong Luo1Wenjie Han1Qi Zhang1He Zhu1( )Shiping Zhu1( )
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
Show Author Information

Graphical Abstract

Heteroatom-doped hollow porous carbons and hollow carbon nanocomposites were synthesized through a simple one-pot two-step heating process.

Abstract

Hollow porous carbons (HPCs) are a class of porous materials with advantages of high surface to volume ratio, large interior cavities, low density, and short diffusion length, which are promising in various applications. Direct carbonization of carbon precursors is the simplest and the most cost-effective method to prepare porous carbons, however, it often leads to non-hollow structures. Herein, we demonstrate the preparation of HPCs through a direct carbonization method with a two-step heating process of zeolitic imidazolate framework-8 (ZIF-8) and tetrafluoroterephthalonitrile (TFTPN). During the carbonization, ZIF-8 nanoparticles first react with TFTPN at low temperature to create polymer coatings on the surface, which are then converted into HPCs at elevated temperature. The obtained HPCs show hierarchically porous structure with high specific surface areas and pore volumes. Additionally, this method has been adopted to fabricate Au@HPCs yolk–shell composites, exhibiting good catalytic performance in nitrobenzene reduction. The developed synthesis strategy can enrich the toolbox for the preparation of novel HPCs and their composites.

Electronic Supplementary Material

Download File(s)
12274_2022_4201_MOESM1_ESM.pdf (2.6 MB)

References

1

Ren, J. C.; Huang, Y. L.; Zhu, H.; Zhang, B. H.; Zhu, H. K.; Shen, S. H.; Tan, G. Q.; Wu, F.; He, H.; Lan, S. et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2020, 2, 176–202.

2

Zhang, R. P.; Li, W. C.; Hao, G. P.; Lu, A. H. Confined nanospace pyrolysis: A versatile strategy to create hollow structured porous carbons. Nano Res. 2021, 14, 3159–3173.

3

Fan, H. L.; Hu, X.; Zhang, S.; Xu, Z. X.; Gao, G. M.; Zheng, Y.; Hu, G. Z.; Chen, Q. F.; AlGarni, T. S.; Luque, R. Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon 2021, 180, 254–264.

4

Hou, C. C.; Wang, Y.; Zou, L. L.; Wang, M.; Liu, H. W.; Liu, Z.; Wang, H. F.; Li, C. X.; Xu, Q. A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 2021, 33, 2101698.

5

Lu, X. F.; Fang, Y. J.; Luan, D. Y.; David Lou, X. W. Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review. Nano Lett. 2021, 21, 1555–1565.

6

Ni, W.; Xue, Y. F.; Zang, X. G.; Li, C. X.; Wang, H. Z.; Yang, Z. Y.; Yan, Y. M. Fluorine doped cagelike carbon electrocatalyst: An insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential. ACS Nano 2020, 14, 2014–2023.

7

Liu, Y.; Li, Q. Y.; Guo, X.; Kong, X. D.; Ke, J. W.; Chi, M. F.; Li, Q. X.; Geng, Z. G.; Zeng, J. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Adv. Mater. 2020, 32, 1907690.

8

Zhai, Y.; Wang, F. M.; Zhang, X. B.; Lv, G. J.; Wu, Y. Z.; Jiang, T.; Zhang, Q.; Li, M. Y.; Li, M. Y.; Liu, Y. K. Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid. Nano Res. 2021, 14, 4304–4313.

9

Chen, C. J.; Song, J. W.; Zhu, S. Z.; Li, Y. J.; Kuang, Y. D.; Wan, J. Y.; Kirsch, D.; Xu, L. S.; Wang, Y. B.; Gao, T. T. et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 2018, 4, 544–554.

10

Zhang, F.; Feng, Y. Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. :R:Rep. 2020, 142, 100580.

11

Gadipelli, S.; Guo, Z. X. Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield—A case for superior CO2 capture. ChemSusChem 2015, 8, 2123–2132.

12

Ma, X. C.; Chen, R. F.; Zhou, K.; Wu, Q. D.; Li, H. L.; Zeng, Z.; Li, L. Q. Activated porous carbon with an ultrahigh surface area derived from waste biomass for acetone adsorption, CO2 capture, and light hydrocarbon separation. ACS Sustainable Chem. Eng. 2020, 8, 11721–11728.

13
Wei, R. P.; Dong, Y. T.; Zhang, Y. Y.; Kang, X. Y.; Sheng, X.; Zhang, J. M. Hollow cubic MnS-CoS2-NC@NC designed by two kinds of nitrogen-doped carbon strategy for sodium ion batteries with ultraordinary rate and cycling performance. Nano Res., in press, https://doi.org/10.1007/s12274-021-3973-z.
14
Gao, H.; Sun, L. M.; Li, M. G.; Zhan, W. W.; Wang, X. J.; Han, X. G. Fabricating a hollow cuboctahedral structure for N-doped carbon coated p-n heterojunctions towards high-performance photocatalytic organic transformation. Nano Res., in press, DOI: 10.1007/s12274-021-4016-5.https://doi.org/10.1007/s12274-021-4016-5
15

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

16

Tan, Y. C.; Zeng, H. C. Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures. Chem. Commun. 2016, 52, 11591–11594.

17

Zhang, W.; Jiang, X. F.; Zhao, Y. Y.; Carné-Sánchez, A.; Malgras, V.; Kim, J.; Kim, J. H.; Wang, S. B.; Liu, J.; Jiang, J. S. et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 2017, 8, 3538–3546.

18

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

19

Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

20

Huang, L. Q.; Luo, Z. Y.; Luo, M. W.; Zhang, Q.; Zhu, H.; Shi, K. Y.; Zhu, S. P. One-step synthesis of nitrogen-fluorine dual-doped porous carbon for supercapacitors. J. Energy Storage 2021, 38, 102509.

21

Huang, L. Q.; Xiang, Y.; Luo, M. W.; Zhang, Q.; Zhu, H.; Shi, K. Y.; Zhu, S. P. Hierarchically porous carbon with heteroatom doping for the application of Zn-ion capacitors. Carbon 2021, 185, 1–8.

22

Kim, M. J.; Xu, X. T.; Xin, R. J.; Earnshaw, J.; Ashok, A.; Kim, J.; Park, T.; Nanjundan, A. K.; El-Said, W. A.; Yi, J. W. et al. KOH-activated hollow ZIF-8 derived porous carbon: Nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Appl. Mater. Interfaces 2021, 13, 52034–52043.

23

Son, I. S.; Oh, Y.; Yi, S. H.; Im, W. B.; Chun, S. E. Facile fabrication of mesoporous carbon from mixed polymer precursor of PVDF and PTFE for high-power supercapacitors. Carbon 2020, 159, 283–291.

24

de Silva, A. J.; Contreras, M. M.; Nascimento, C. R.; da Costa, M. F. Kinetics of thermal degradation and lifetime study of poly(vinylidene fluoride) (PVDF) subjected to bioethanol fuel accelerated aging. Heliyon 2020, 6, e04573.

25

Shabani-Nooshabadi, M.; Karimian-Taheri, F. Electrosynthesis of a polyaniline/zeolite nanocomposite coating on copper in a three-step process and the effect of current density on its corrosion protection performance. RSC Adv. 2015, 5, 96601–96610.

26

Bhattacharyya, S.; Pang, S. H.; Dutzer, M. R.; Lively, R. P.; Walton, K. S.; Sholl, D. S.; Nair, S. Interactions of SO2-containing acid gases with ZIF-8: Structural changes and mechanistic investigations. J. Phys. Chem. C 2016, 120, 27221–27229.

27

Zhang, B.; Wei, M. F.; Mao, H. Y.; Pei, X. K.; Alshmimri, S. A.; Reimer, J. A.; Yaghi, O. M. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions. J. Am. Chem. Soc. 2018, 140, 12715–12719.

28

Li, F. Y.; Xiao, Y. C.; Chung, T. S.; Kawi, S. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 2012, 45, 1427–1437.

29
Clark, D. T.; Kilcast, D.; Adams, D. B.; Musgrave, W. K. R. An ESCA study of the molecular core binding energies of the fluorobenzenes. J. Electron Spectros. Relat. Phenom. 1972–1973, 1, 227–250.https://doi.org/10.1016/0368-2048(72)85013-8
30

Ebrahimpour, Z.; Mansour, N. Annealing effects on electrical behavior of gold nanoparticle film: Conversion of ohmic to non-ohmic conductivity. Appl. Surf. Sci. 2017, 394, 240–247.

31

Deng, X. Y.; Li, J. J.; Shan, Z.; Sha, J. W.; Ma, L. Y.; Zhao, N. Q. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 2020, 8, 11617–11625.

32

Zeng, L.; Dai, C. H.; Liu, B.; Xue, C. Oxygen-assisted stabilization of single-atom Au during photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 24217–24221.

33

Yang, T. Y.; Ling, H. J.; Lamonier, J. F.; Jaroniec, M.; Huang, J.; Monteiro, M. J.; Liu, J. A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Mater. 2016, 8, e240.

34

Couchman, P. R.; Jesser, W. A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 1977, 269, 481–483.

35

Zhou, J. J.; Duan, B.; Fang, Z.; Song, J. B.; Wang, C. X.; Messersmith, P. B.; Duan, H. W. Interfacial assembly of mussel-inspired Au@Ag@ polydopamine core–shell nanoparticles for recyclable nanocatalysts. Adv. Mater. 2014, 26, 701–705.

36

Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. One-step synthesis of core-gold/shell-ceria nanomaterial and its catalysis for highly selective semihydrogenation of alkynes. J. Am. Chem. Soc. 2015, 137, 13452–13455.

37

Choi, S.; Lee, H. J.; Oh, M. Facile synthesis of Au or Ag nanoparticles-embedded hollow carbon microspheres from metal-organic framework hybrids and their efficient catalytic activities. Small 2016, 12, 2425–2431.

Nano Research
Pages 5769-5774
Cite this article:
Huang L, Luo Z, Han W, et al. Direct transformation of ZIF-8 into hollow porous carbons and hollow carbon composites. Nano Research, 2022, 15(7): 5769-5774. https://doi.org/10.1007/s12274-022-4201-1
Topics:

1295

Views

19

Crossref

18

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 27 November 2021
Revised: 21 January 2022
Accepted: 27 January 2022
Published: 28 March 2022
© Tsinghua University Press 2022
Return