Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Strong ionic character endows all-inorganic perovskite nanocrystals (NCs) with particular optoelectronic features when interacting with common polar solvents, such as water. However, the interaction mechanism of water affecting perovskite NCs is still lack of in-depth understanding. This study systematically explores the roles of water on CsPbBr3 nanocrystals (CNCs) by finely controlling the polymer coating degree of polydimethylsiloxane-based polyurea (PDMS-PUa). Through this coating, the effect of water on CNCs is found to experience from “fluorescence quenching” owing to irreversible crystal decomposition towards “forward fluorescence reversibility” by crystal destruction and recrystallization. With gradually enhanced coating, a phenomenon of “reverse fluorescence reversibility” is further observed in that water begins to passivate the CNCs’ defect states. Finally, “fluorescent balance” can be achieved with a thick enough coating, where water can hardly contact with the CNCs. Inspired by the fluorescence reversible mechanism discovered, a new wearable intelligent sensing skin is demonstrated by using the CsPbBr3/PDMS-PUa composite as raw material. Both water contact and humidity change can be perceived through photoluminescence (PL) intensity, corresponding to stimuli-responsive sensory nerves of human skin. It is expected that these findings will shed some new lights on perovskite NCs.
Xie, C.; Liu, C. K.; Loi, H. L.; Yan, F. Perovskite-based phototransistors and hybrid photodetectors. Adv. Funct. Mater. 2019, 30, 1903907.
Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Li, S. B.; Penty, R. V.; White, I. H. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997–2018.
Xu, X. L.; Xiao, L. B.; Wu, Z.; Jia, Y. M.; Ye, X.; Wang, F. F.; Yuan, B.; Yu, Y.; Huang, H. T.; Zou, G. F. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite. Nano Energy 2020, 78, 105351.
Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.
Huang, Y. T.; Kavanagh, S. R.; Scanlon, D. O.; Walsh, A.; Hoye, R. L. Z. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology 2021, 32, 132004.
Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.
Zhang, M.; Wang, M. Q.; Yang, Z.; Li, J. J.; Qiu, H. W. Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application. J. Alloys Compd. 2018, 748, 537–545.
Ye, S.; Yu, M. H.; Zhao, M. J.; Song, J.; Qu, J. L. Low temperature synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals in open air and their upconversion luminescence. J. Alloys Compd. 2018, 730, 62–70.
Liu, S. J.; Chen, G. X.; Huang, Y. Y.; Lin, S.; Zhang, Y. J.; He, M. L.; Xiang, W. D.; Liang, X. J. Tunable fluorescence and optical nonlinearities of all inorganic colloidal cesium lead halide perovskite nanocrystals. J. Alloys Compd. 2017, 724, 889–896.
Fang, S. F.; Li, G. S.; Lu, Y. T.; Li, L. P. Highly luminescent CsPbX3 (X = Cl, Br, I) nanocrystals achieved by a rapid anion exchange at room temperature. Chem. -Eur. J. 2018, 24, 1898–1904.
Fang, J. J.; Ding, Z. C.; Chang, X. M.; Lu, J.; Yang, T. H.; Wen, J. L.; Fan, Y. Y.; Zhang, Y. L.; Luo, T.; Chen, Y. H. et al. Microstructure and lattice strain control towards high-performance ambient green-printed perovskite solar cells. J. Mater. Chem. A 2021, 9, 13297–13305.
Zhang, F.; Zhang, Q.; Liu, X.; Hu, Y. F.; Lou, Z. D.; Hou, Y. B.; Teng, F. Property modulation of two-dimensional lead-free perovskite thin films by aromatic polymer additives for performance enhancement of field-effect transistors. ACS Appl. Mater. Interfaces 2021, 13, 24272–24284.
Che, Y. L.; Cao, X. L.; Zhang, Y. T.; Yao, J. Q. High-performance photodetector using CsPbBr3 perovskite nanocrystals and graphene hybrid channel. J. Mater. Sci. 2021, 56, 2341–2346.
Mun, T.; Koo, J. Y.; Lee, J.; Kim, S. J.; Umarji, G.; Amalnerkar, D.; Lee, W. Resistive-type lanthanum ferrite oxygen sensor based on nanoparticle-assimilated nanofiber architecture. Sens. Actuat. B:Chem. 2020, 324, 128712.
Baker, R. W.; Forfar, L.; Liang, X. X.; Cameron, P. J. Using design of experiment to obtain a systematic understanding of the effect of synthesis parameters on the properties of perovskite nanocrystals. React. Chem. Eng. 2021, 6, 709–719.
Guvenc, C. M.; Polat, N.; Balci, S. Strong Plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film. J. Mater. Chem. C 2020, 8, 16520–16526.
Song, L.; Huang, L. X.; Liu, Y.; Hu, Y. S.; Guo, X. Y.; Chang, Y. L.; Geng, C.; Xu, S.; Zhang, Z. H.; Zhang, Y. H. et al. Efficient and stable blue perovskite light-emitting devices based on inorganic Cs4PbBr6 spaced low-dimensional CsPbBr3 through synergistic control of amino alcohols and polymer additives. ACS Appl. Mater. Interfaces 2021, 13, 33199–33208.
Wang, Y. N.; Dong, Y. J.; Liu, Q.; Guo, X.; Zhang, M. J.; Li, Y. F. In-situ stabilization strategy for CsPbX3-silicone resin composite with enhanced luminescence and stability. Nano Energy 2020, 78, 105150.
Liu, Y. L.; Yang, W. H.; Xiao, S. M.; Zhang, N.; Fan, Y. B.; Qu, G. Y.; Song, Q. H. Surface-emitting perovskite random lasers for speckle-free imaging. ACS Nano 2019, 13, 10653–10661.
Meng, D. H.; Xiao, Y. S.; He, H. C.; Liao, Y. L.; Zhang, H. W.; Zhai, J. Y.; Chen, Z. H.; Martin, L. W.; Bai, F. M. Enhanced spontaneous polarization in double perovskite Bi2FeCrO6 films. J. Am. Ceram. Soc. 2019, 102, 5234–5242.
Yoon, Y. J.; Shin, Y. S.; Park, C. B.; Son, J. G.; Kim, J. W.; Kim, H. S.; Lee, W.; Heo, J.; Kim, G. H.; Kim, J. Y. Origin of the luminescence spectra width in perovskite nanocrystals with surface passivation. Nanoscale 2020, 12, 21695–21702.
Mundt, L. E.; Tong, J. H.; Palmstrom, A. F.; Dunfield, S. P.; Zhu, K.; Berry, J. J.; Schelhas, L. T.; Ratcliff, E. L. Surface-activated corrosion in tin-lead halide perovskite solar cells. ACS Energy Lett. 2020, 5, 3344–3351.
Li, L. D.; Ye, S.; Qu, J. L.; Zhou, F. F.; Song, J.; Shen, G. Z. Recent advances in perovskite photodetectors for image sensing. Small 2021, 17, 2005606.
Chen, E. G.; Lin, J. Y.; Yang, T.; Chen, Y.; Zhang, X.; Ye, Y.; Sun, J.; Yan, Q.; Guo, T. L. Asymmetric quantum-dot pixelation for color-converted white balance. ACS Photonics 2021, 8, 2158–2165.
Dai, G.; Wang, L.; Cheng, S. J.; Chen, Y.; Liu, X.; Deng, L. G.; Zhong, H. Z. Perovskite quantum dots based optical fabry-pérot pressure sensor. ACS Photonics 2020, 7, 2390–2394.
Tu, Y. D.; Xu, Y.; Li, J. Z.; Hao, Q. Y.; Liu, X. S.; Qi, D. Y; Bao, C. X.; He, T. C.; Gao, F.; Zhang, W. J. Ultrathin single-crystalline 2D perovskite photoconductor for high-performance narrowband and wide linear dynamic range photodetection. Small 2020, 16, 2005626.
Ippili, S.; Jella, V.; Eom, S.; Hong, S.; Yoon, S. G. Light-driven piezo-and triboelectricity in organic-inorganic metal trihalide perovskite toward mechanical energy harvesting and self-powered sensor application. ACS Appl. Mater. Interfaces 2020, 12, 50472–50483.
Wu, Z. L.; Yang, J.; Sun, X.; Wu, Y. J.; Wang, L.; Meng, G.; Kuang, D. L.; Guo, X. Z.; Qu, W. J.; Du, B. S. et al. An excellent impedance-type humidity sensor based on halide perovskite CsPbBr3 nanoparticles for human respiration monitoring. Sens. Actuat. B: Chem. 2021, 337, 129772.
Weng, Z. H.; Qin, J. J.; Umar, A. A.; Wang, J.; Zhang, X.; Wang, H. L.; Cui, X. L.; Li, X. G.; Zheng, L. R.; Zhan, Y. Q. Lead-free Cs2BiAgBr6 double perovskite-based humidity sensor with superfast recovery time. Adv. Funct. Mater. 2019, 29, 1902234.
Pi, C. J.; Yu, X.; Chen, W. Q.; Yang, L. L.; Wang, C.; Liu, Z. C.; Wang, Y. Y.; Qiu, J. B.; Liu, B. T.; Xu, X. H. A reversible and fast-responsive humidity sensor based on a lead-free Cs2TeCl6 double perovskite. Mater. Adv. 2021, 2, 1043–1049.
Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.
Guerrero, A.; Bisquert, J. B. J. Perovskite semiconductors for photoelectrochemical water splitting applications. Curr. Opin. Electrochem. 2017, 2, 144–147.
Zhou, W. K.; Zhao, Y. C.; Shi, C. L.; Huang, H. N.; Wei, J.; Fu, R.; Liu, K. H.; Yu, D. P.; Zhao, Q. Reversible healing effect of water molecules on fully crystallized metal-halide perovskite film. J. Phys. Chem. C 2016, 120, 4759–4765.
Eperon, G. E.; Habisreutinger, S. N.; Leijtens, T.; Bruijnaers, B. J.; van Franeker, J. J.; DeQuilettes, D. W.; Pathak, S.; Sutton, R. J.; Grancini, G.; Ginger, D. S. et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano 2015, 9, 9380–9393.
Liu, Y.; Li, F.; Liu, Q. L.; Xia, Z. G. Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem. Mater. 2018, 19, 6922–6929.
Yu, X. Y.; Wu, L. Z.; Yang, D.; Cao, M. H.; Fan, X.; Lin, H. P.; Zhong, Q. X.; Xu, Y.; Zhang, Q. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting. Angew. Chem., Int. Ed. 2020, 59, 14527–14532.
Xiang, Q. Y.; Zhou, B. Z.; Cao, K.; Wen, Y. W.; Li, Y.; Wang, Z. J.; Jiang, C. C.; Shan, B.; Chen, R. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition. Chem. Mater. 2018, 30, 8486–8494.
Yang, D. D.; Li, X. M.; Zeng, H. B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability. Adv. Mater. Inter. 2018, 5, 1701662.
Chen, L. C.; Tien, C. H.; Tseng, P. W.; Tseng, Z. L.; Huang, W. L.; Xu, Y. X.; Kuo, H. C. Effect of washing solvents on the properties of air-synthesized perovskite CsPbBr3 quantum dots for quantum dot-based light-emitting devices. IEEE Access 2020, 8, 159415–159423.
Deng, J. D.; Xun, J.; He, R. X. Facile and rapid synthesis of high performance perovskite nanocrystals CsPb(X/Br)3 (X = Cl, I) at room temperature. Opt. Mater. 2020, 99, 109528.
Muth, J. T.; Vogt, D. M.; Truby, R. L.; Mengüç, Y.; Kolesky, D. B.; Wood, R. J.; Lewis, J. A. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 2014, 26, 6307–6312.
Zheng, Y. J.; Li, Y. L.; Li, Z. Y.; Wang, Y. L.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Compos. Sci. Technol. 2017, 139, 64–73.
Fang, M. J.; Huang, S. H.; Li, D.; Jiang, C. L.; Tian, P.; Lin, H. C.; Luo, C. H.; Yu, W. L.; Peng, H. Stretchable and self-healable organometal halide perovskite nanocrystal-embedded polymer gels with enhanced luminescence stability. Nanophotonics 2018, 7, 1949–1958.
Mata, A.; Fleischman, A. J.; Roy, S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 2005, 7, 281–293.
Xie, G.; Xu, L.; Sun, L.; Xiong, Y.; Wu, P.; Hu, B. Insight into the reaction mechanism of water, oxygen and nitrogen molecules on a tin iodine perovskite surface. J. Mater. Chem. A 2019, 7, 5779–5793.
Miao, X. B.; Wu, L.; Lin, Y.; Yuan, X. Y.; Zhao, J. Y.; Yan, W. S.; Zhou, S. M.; Shi, L. The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: Are more better? Chem. Commun. 2019, 55, 1442–1445.
Xie, H. X.; Chen, E. G.; Ye, Y.; Xu, S.; Guo, T. L. Interfacial optimization of quantum dot and silica hybrid nanocomposite for simultaneous enhancement of fluorescence retention and stability. Appl. Phys. Lett. 2020, 117, 171101.
Quan, L. N.; Quintero-Bermudez, R.; Voznyy, O; Walters, G.; Jain, A.; Fan, J. Z.; Zheng, X. L.; Yang, Z. Y.; Sargent, E. H. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv. Mater. 2017, 29, 1605945.
Tan, Y. S.; Li, R. Y.; Xu, H.; Qin, Y. S.; Song, T.; Sun, B. Q. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 2019, 29, 1900730.
Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Van Schilfgaarde, M.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14, 2584–2590.
Palazon, F.; Akkerman, Q. A.; Prato, M.; Manna, L. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 2016, 10, 1224–1230.
Zhong, Q. X.; Cao, M. H.; Hu, H. C; Yang, D.; Chen, M.; Li, P. L.; Wu, L. Z.; Zhang, Q. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 2018, 12, 8579–8587.
Wang, L.; Ma, D. C.; Guo, C.; Jiang, X.; Li, M. L.; Xu, T. T.; Zhu, J. P.; Fan, B. B.; Liu, W.; Shao, G. et al. CsPbBr3 nanocrystals prepared by high energy ball milling in one-step and structural transformation from CsPbBr3 to CsPb2Br5. Appl. Surf. Sci. 2021, 543, 148782.
Caicedo-Dávila, S.; Gunder, R.; Márquez, J. A.; Levcenko, S.; Schwarzburg, K.; Unold, T.; Abou-Ras, D. Effects of postdeposition annealing on the luminescence of mixed-phase CsPb2Br5/CsPbBr3 thin films. J. Phys. Chem. C 2020, 124, 19514–19521.
Jin, M. G.; Li, Z. B.; Huang, F.; Wang, W. L. Electronic and optical properties of CsPb2Br5: A first-principles study. Mod. Phys. Lett. B 2019, 33, 1950266.
Luo, C. H.; Huang, S. H.; Zhang, T.; Jiang, C. L.; Qi, R. J.; Liu, M. Q.; Lin, H. C.; Travas-Sejdic, J.; Peng, H. Water driven photoluminescence enhancement and recovery of CH3NH3PbBr3/Silicon oil/PDMS-urea composite. J. Alloys Compd. 2020, 834, 155088.
Xie, Q. Y.; Liu, C.; Lin, X. B.; Ma, C. F.; Zhang, G. Z. Nanodiamond reinforced poly(dimethylsiloxane)-based polyurea with self-healing ability for fouling release coating. ACS Appl. Polym. Mater. 2020, 2, 3181–3188.
Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.
Feldmann, J.; Peter, G.; Göbel, E. O.; Dawson, P.; Moore, K.; Foxon, C.; Elliott, R. J. Linewidth dependence of radiative exciton lifetimes in quantum-wells. Phys. Rev. Lett. 1987, 59, 2337–2340.
Ren, L. F.; Xia, F.; Shao, J. H.; Zhang, X. F.; Li, J. Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation. Desalination 2017, 404, 155–166.
Halimoon, H.; Hussain, A. R.; Kouzani, A.; Alam, M. N. H. Z. Aerobic fermentation of Saccharomeyes cerevisae in a miniature bioreactor made of low cost poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) polymers. Sains Malays. 2016, 45, 969–976.