AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hot electron assisted photoelectrochemical water splitting from Au-decorated ZnO@TiO2 nanorods array

Hongdong Li1,2,3Hongyan Liu4Fei Wang1Guodong Li1,2Xiaoli Wang1,2( )Zhiyong Tang1,2
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Beijing Institute of Aeronautical Materials, Beijing 100095, China
Show Author Information

Graphical Abstract

Au-decorated ZnO@TiO2 nanorods array, which could enhance the light capture efficiency via the surface plasmon resonance effect of Au nanoparticles (NPs), exhibits the superior photoelectrochemical water splitting, because the prolonged hot electrons can be effectively transferred to the adjacent semiconductor.

Abstract

Engineering of semiconductor nanomaterials is critical to enhance the photoelectrochemical (PEC) performance for water splitting. However, semiconductors often show the low light absorption, slow charge transfer, and easy recombination of carriers, thus leading to the low catalytic efficiency. In this work, we show facile synthesis of ZnO@TiO2 core–shell nanorods (NRs) arrays modified with Au nanoparticles (NPs) as the photoelectrode for PEC water splitting. Impressively, the obtained ZnO@TiO2(15 nm)/Au(8 nm) array shows the maximum photocurrent density of 3.14 mA/cm2 at 1.2 V vs. reversible hydrogen electrode (RHE), 2.6 times and 1.7 times higher than those obtained from ZnO NRs and ZnO@TiO2(15 nm) arrays. The electric-field simulation and transient absorption spectroscopy show that the Au-decorated core–shell nanostructures have an enhanced hot electron generation and prolonged decay time, indicating effective charge transfer and recombination inhibition of carriers. This work provides an efficient preparation strategy for photoelectrodes as well as great potential for the large-scale development of this technology.

Electronic Supplementary Material

Download File(s)
12274_2022_4203_MOESM1_ESM.pdf (2.6 MB)

References

1

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

2

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759.

3

Chen, J. Q.; Yang, D. H.; Song, D.; Jiang, J. H.; Ma, A. B.; Hu, M. Z.; Ni, C. Y. Recent progress in enhancing solar-to-hydrogen efficiency. J. Power Sources 2015, 280, 649–666.

4

Valenti, M.; Jonsson, M. P.; Biskos, G.; Schmidt-Ott, A.; Smith, W. A. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 2016, 4, 17891–17912.

5

Li, C. P.; Li, S. R.; Xu, C.; Ma, K. S. Plasmon-enhanced unidirectional charge transfer for efficient solar water oxidation. Nanoscale 2021, 13, 4654–4659.

6

Yuan, L.; Han, C.; Yang, M. Q.; Xu, Y. J. Photocatalytic water splitting for solar hydrogen generation: Fundamentals and recent advancements. Int. Rev. Phys. Chem. 2016, 35, 1–36.

7

Li, M.; Chen, L.; Zhou, C.; Jin, C. C.; Su, Y. J.; Zhang, Y. F. 3D highly efficient photonic micro concave-pit arrays for enhanced solar water splitting. Nanoscale 2019, 11, 18071–18080.

8

Liu, Z. F.; Zhang, J.; Yan, W. G. Enhanced photoelectrochemical water splitting of photoelectrode simultaneous decorated with cocatalysts based on spatial charge separation and transfer. ACS Sustainable Chem. Eng. 2018, 6, 3565–3574.

9

Jeong, K.; Deshmukh, P. R.; Park, J.; Sohn, Y.; Shin, W. G. ZnO-TiO2 core–shell nanowires: A sustainable photoanode for enhanced photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2018, 6, 6518–6526.

10

Liu, Y. C.; Yan, X. Q.; Kang, Z.; Li, Y.; Shen, Y. W.; Sun, Y. H.; Wang, L.; Zhang, Y. Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 2016, 6, 29907.

11

Khan, H. R.; Akram, B.; Aamir, M.; Malik, M. A.; Tahir, A. A.; Choudhary, M. A.; Akhtar, J. Fabrication of Ni2+ incorporated ZnO photoanode for efficient overall water splitting. Appl. Surf. Sci. 2019, 490, 302–308.

12

Han, H.; Karlicky, F.; Pitchaimuthu, S.; Shin, S. H. R.; Chen, A. P. Highly ordered N-doped carbon dots photosensitizer on metal-organic framework-decorated ZnO nanotubes for improved photoelectrochemical water splitting. Small 2019, 15, 1902771.

13

Zhang, C. L.; Shao, M. F.; Ning, F. Y.; Xu, S. M.; Li, Z. H.; Wei, M.; Evans, D. G.; Duan, X. Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting. Nano Energy 2015, 12, 231–239.

14

Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Y. Core-shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237.

15

Hsu, Y. K.; Chen, Y. C.; Lin, Y. G. Novel ZnO/Fe2O3 core–shell nanowires for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2015, 7, 14157–14162.

16

Zhang, X.; Liu, Y.; Kang, Z. H. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480–4489.

17

Lee, J. W.; Cho, K. H.; Yoon, J. S.; Kim, Y. M.; Sung, Y. M. Photoelectrochemical water splitting using one-dimensional nanostructures. J. Mater. Chem. A 2021, 9, 21576–21606.

18

Hernández, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C. F. Optimization of 1D ZnO@TiO2 core–shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153–12167.

19

Kargar, A.; Jing, Y.; Kim, S. J.; Riley, C. T.; Pan, X. Q.; Wang, D. L. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 2013, 7, 11112–11120.

20

Mascaretti, L.; Dutta, A.; Kment, Š.; Shalaev, V. M.; Boltasseva, A.; Zbořil, R.; Naldoni, A. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage. Adv. Mater. 2019, 31, 1805513.

21

Xiao, F. X.; Liu, B. Plasmon-dictated photo-electrochemical water splitting for solar-to-chemical energy conversion: Current status and future perspectives. Adv. Mater. Interfaces 2018, 5, 1701098.

22

Lee, J. B.; Choi, S.; Kim, J.; Nam, Y. S. Plasmonically-assisted nanoarchitectures for solar water splitting: Obstacles and breakthroughs. Nano Today 2017, 16, 61–81.

23

Liu, G. H.; Du, K.; Xu, J. L.; Chen, G.; Gu, M. Y.; Yang, C. P.; Wang, K. Y.; Jakobsen, H. Plasmon-dominated photoelectrodes for solar water splitting. J. Mater. Chem. A 2017, 5, 4233–4253.

24

Ghosh, D.; Roy, K.; Sarkar, K.; Devi, P.; Kumar, P. Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2020, 12, 28792–28800.

25

Jiang, W. Y.; Wu, X. X.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Chen, Z. X.; Liang, C.; Liu, X. F.; Zhang, Y. Integrated hetero-nanoelectrodes for plasmon-enhanced electrocatalysis of hydrogen evolution. Nano Res. 2021, 14, 1195–1201.

26

Moon, C. W.; Choi, M. J.; Hyun, J. K.; Jang, H. W. Enhancing photoelectrochemical water splitting with plasmonic Au nanoparticles. Nanoscale Adv. 2021, 3, 5981–6006.

27

Han, C.; Quan, Q.; Chen, H. M.; Sun, Y. G.; Xu, Y. J. Progressive design of plasmonic metal-semiconductor ensemble toward regulated charge flow and improved Vis-NIR-driven solar-to-chemical conversion. Small 2017, 13, 1602947.

28

Zhang, N.; Han, C.; Fu, X. Z.; Xu, Y. J. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: Exerting plasmonic effect and beyond. Chem 2018, 4, 1832–1861.

29

Zhang, N.; Han, C.; Xu, Y. J.; Foley IV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon. 2016, 10, 473–482.

30

Liu, C.; Wu, P. C.; Wu, K. L.; Meng, G. H.; Wu, J. N.;Hou, J.; Liu, Z. Y.; Guo, X. H. Advanced bi-functional CoPi co-catalyst-decorated g-C3N4 nanosheets coupled with ZnO nanorod arrays as integrated photoanodes. Dalton Trans. 2018, 47, 6605–6614.

31

Kwiatkowski, M.; Bezverkhyy, I.; Skompska, M. ZnO nanorods covered with a TiO2 layer: Simple sol-gel preparation, and optical, photocatalytic and photoelectrochemical properties. J. Mater. Chem. A 2015, 3, 12748–12760.

32

Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972.

33

Li, H. D.; Ali, W.; Wang, Z. C.; Mideksa, M. F.; Wang, F.; Wang, X. L.; Wang, L.; Tang, Z. Y. Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber. Nano Energy 2019, 63, 103873.

34

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

35

Li, H. X.; Li, Z. D.; Yu, Y. H.; Ma, Y. J.; Yang, W. G.; Wang, F.; Yin, X.; Wang, X. D. Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures. J. Phys. Chem. C 2017, 121, 12071–12079.

36

Tada, H.; Suzuki, F.; Ito, S.; Akita, T.; Tanaka, K.; Kawahara, T.; Kobayashi, H. Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organosulfur compound. J. Phys. Chem. B 2002, 106, 8714–8720.

37

Shao, D. L.; Sun, H. T.; Xin, G. Q.; Lian, J.; Sawyer, S. High quality ZnO-TiO2 core–shell nanowires for efficient ultraviolet sensing. Appl. Surf. Sci. 2014, 314, 872–876.

38

Chiu, Y. H.; Chang, K. D.; Hsu, Y. J. Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals. J. Mater. Chem. A 2018, 6, 4286–4296.

39

Wang, X. L.; Morea, R.; Gonzalo, J.; Palpant, B. Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles. Nano Lett. 2015, 15, 2633–2639.

40

Wang, X. L.; Guillet, Y.; Selvakannan, P. R.; Remita, H.; Palpant, B. Broadband spectral signature of the ultrafast transient optical response of gold nanorods. J. Phys. Chem. C 2015, 119, 7416–7427.

41

Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

42

Han, C.; Li, S. H.; Tang, Z. R.; Xu, Y. J. Tunable plasmonic core-shell heterostructure design for broadband light driven catalysis. Chem. Sci. 2018, 9, 8914–8922.

43

Huang, Y. W.; Yu, Q. J.; Wang, J. Z.; Wang, J. N.;Yu, C. L.; Abdalla, J. T.; Zeng, Z.; Jiao, S. J.; Wang, D. B.; Gao, S. Y. Plasmon-enhanced self-powered UV photodetectors assembled by incorporating Ag@SiO2 core–shell nanoparticles into TiO2 nanocube photoanodes. ACS Sustainable Chem. Eng. 2018, 6, 438–446.

44

Cheng, J. J.; Li, Y. W.; Plissonneau, M.; Li, J. G.; Li, J. Z.; Chen, R.; Tang, Z. K.; Pautrot-d’Alençon, L.; He, T. C.; Tréguer-Delapierre, M. et al. Plasmon-induced hot electron transfer in AgNW@TiO2@AuNPs nanostructures. Sci. Rep. 2018, 8, 14136.

Nano Research
Pages 5824-5830
Cite this article:
Li H, Liu H, Wang F, et al. Hot electron assisted photoelectrochemical water splitting from Au-decorated ZnO@TiO2 nanorods array. Nano Research, 2022, 15(7): 5824-5830. https://doi.org/10.1007/s12274-022-4203-z
Topics:

1047

Views

25

Crossref

22

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 23 December 2021
Revised: 17 January 2022
Accepted: 27 January 2022
Published: 18 April 2022
© Tsinghua University Press 2022
Return