AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Designed histidine-rich peptide self-assembly for accelerating oxidase-catalyzed reactions

Peidong DuSiyuan LiuHao SunHaifeng WuZhen-Gang Wang( )
State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

The histidine-rich peptides self-assemble with peroxidases to form biocatalytic hybrids, in which the histidine from the peptides may collaborate with the residues in the heme pocket of the enzyme to accelerate the catalytic rate toward H2O2-oxidation of electron donor substrates.

Abstract

It is an important goal for supramolecular chemistry to develop synthetic enzyme mimics rivaling native enzymes, while de novo fabrication of such mimics remains a challenge. Alternatively, the catalytic groups from the supramolecular complex can be integrated with the active sites of natural enzymes. Herein, we present a supramolecular catalytic hybrid that is self-assembled from oligohistidine-based peptides and a heme-dependent peroxidase. The results indicate that the peptides altered the enzyme conformation, promoted the transitions between the resting and the intermediate states of the heme, and increased the turnover rate of the enzyme by up to three-fold. We propose that the histidine residues from the peptides may collaborate with the groups in the natural heme pocket to accelerate the catalytic cycles of the enzyme. Our observations underline the advantages of the supramolecular approach and suggest that molecular self-assembly may combine with enzymes to provide a simple strategy to engineer the enzymatic active sites.

Electronic Supplementary Material

Download File(s)
12274_2022_4209_MOESM1_ESM.pdf (3.5 MB)

References

1

Meeuwissen, J.; Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2010, 2, 615–621.

2

Wang, Z. J.; Clary, K. N.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 2013, 5, 100–103.

3

Liu, S. Y.; Du, P. D.; Sun, H.; Yu, H. Y.; Wang, Z. G. Bioinspired supramolecular catalysts from designed self-assembly of DNA or peptides. ACS Catal. 2020, 10, 14937–14958.

4

Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 2014, 47, 2177–2185.

5

Pu, F.; Ren, J. S.; Qu, X. G. Nucleobases, nucleosides, and nucleotides: Versatile biomolecules for generating functional nanomaterials. Chem. Soc. Rev. 2018, 47, 1285–1306.

6

Wang, T. T.; Fan, X. T.; Hou, C. X.; Liu, J. Q. Design of artificial enzymes by supramolecular strategies. Curr. Opin. Struct. Biol. 2018, 51, 19–27.

7

Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem., Int. Ed. 2011, 50, 114–137.

8

Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stöhr, J.; Smith, T. A.; Hu, X. Z.; DeGrado, W. F.; Korendovych, I. V. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 2014, 6, 303–309.

9

Makam, P.; Yamijala, S. S. R. K. C.; Tao, K.; Shimon, L. J. W.; Eisenberg, D. S.; Sawaya, M. R.; Wong, B. M.; Gazit, E. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat. Catal. 2019, 2, 977–985.

10

Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew. Chem., Int. Ed. 2007, 46, 4285–4289.

11

Chen, Z. W.; Zhao, C. Q.; Ju, E. G.; Ji, H. W.; Ren, J. S.; Binks, B. P.; Qu, X. G. Design of surface-active artificial enzyme particles to stabilize pickering emulsions for high-performance biphasic biocatalysis. Adv. Mater. 2016, 28, 1682–1688.

12

Chica, R. A.; Doucet, N.; Pelletier, J. N. Semi-rational approaches to engineering enzyme activity: Combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 2005, 16, 378–384.

13

Penning, T. M.; Jez, J. M. Enzyme redesign. Chem. Rev. 2001, 101, 3027–3046.

14

Toscano, M. D.; Woycechowsky, K. J.; Hilvert, D. Minimalist active-site redesign: Teaching old enzymes new tricks. Angew. Chem., Int. Ed. 2007, 46, 3212–3236.

15

Liu, Q.; Wan, K. W.; Shang, Y. X.; Wang, Z. G.; Zhang, Y. Y.; Dai, L. R.; Wang, C.; Wang, H.; Shi, X. H.; Liu, D. S. et al. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nat. Mater. 2021, 20, 395–402.

16

Gao, Y. N.; Roberts, C. C.; Zhu, J.; Lin, J. L.; Chang, C. E.; Wheeldon, I. Tuning enzyme kinetics through designed intermolecular interactions far from the active site. ACS Catal. 2015, 5, 2149–2153.

17

Zhang, Y. F.; Hess, H. Microenvironmental engineering: An effective strategy for tailoring enzymatic activities. Chin. J. Chem. Eng. 2020, 28, 2028–2036.

18

Lancaster, L.; Abdallah, W.; Banta, S.; Wheeldon, I. Engineering enzyme microenvironments for enhanced biocatalysis. Chem. Soc. Rev. 2018, 47, 5177–5186.

19

Xiong, Y.; Huang, J.; Wang, S. T.; Zafar, S.; Gang, O. Local environment affects the activity of enzymes on a 3D molecular scaffold. ACS Nano 2020, 14, 14646–14654.

20

Wilner, O. I.; Weizmann, Y.; Gill, R.; Lioubashevski, O.; Freeman, R.; Willner, I. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 2009, 4, 249–254.

21

Fu, J. L.; Yang, Y. R.; Johnson-Buck, A.; Liu, M. H.; Liu, Y.; Walter, N. G.; Woodbury, N. W.; Yan, H. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 2014, 9, 531–536.

22

Azuma, Y.; Bader, D. L. V.; Hilvert, D. Substrate sorting by a supercharged nanoreactor. J. Am. Chem. Soc. 2018, 140, 860–863.

23

Murata, H.; Cummings, C. S.; Koepsel, R. R.; Russell, A. J. Rational tailoring of substrate and inhibitor affinity via ATRP polymer-based protein engineering. Biomacromolecules 2014, 15, 2817–2823.

24

Scott, G.; Roy, S.; Abul-Haija, Y. M.; Fleming, S.; Bai, S.; Ulijn, R. V. Pickering stabilized peptide gel particles as tunable microenvironments for biocatalysis. Langmuir 2013, 29, 14321–14327.

25

Jones, P.; Dunford, H. B. The mechanism of compound i formation revisited. J. Inorg. Biochem. 2005, 99, 2292–2298.

26

Bhattacharyya, D. K.; Bandyopadhyay, U.; Banerjee, R. K. Chemical and kinetic evidence for an essential histidine residue in the electron transfer from aromatic donor to horseradish peroxidase compound I. J. Biol. Chem. 1993, 268, 22292–22298.

27

Nagano, S.; Tanaka, M.; Ishimori, K.; Watanabe, Y.; Morishima, I. Catalytic roles of the distal site asparagine-histidine couple in peroxidases. Biochemistry 1996, 35, 14251–14258.

28

Das, D.; Roy, S.; Debnath, S.; Das, P. K. Surfactant-stabilized small hydrogel particles in oil: Hosts for remarkable activation of enzymes in organic solvents. Chem. −Eur. J. 2010, 16, 4911–4922.

29

Tan, H. L.; Guo, S.; Dinh, N. D.; Luo, R.; Jin, L.; Chen, C. H. Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions. Nat. Commun. 2017, 8, 663.

30

Bilal, M.; Rasheed, T.; Zhao, Y. P.; Iqbal, H. M. N. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int. J. Biol. Macromol. 2019, 124, 742–749.

31

Gao, X.; Zhai, Q. G.; Hu, M. C.; Li, S. N.; Jiang, Y. C. Hierarchically porous magnetic Fe3O4/Fe-MOF used as an effective platform for enzyme immobilization: A kinetic and thermodynamic study of structure-activity. Catal. Sci. Technol. 2021, 11, 2446–2455.

32

Ricco, R.; Wied, P.; Nidetzky, B.; Amenitsch, H.; Falcaro, P. Magnetically responsive horseradish peroxidase@ZIF-8 for biocatalysis. Chem. Commun. 2020, 56, 5775–5778.

33

Man, T. T.; Xu, C. X.; Liu, X. Y.; Li, D.; Tsung, C. K.; Pei, H.; Wan, Y.; Li, L. Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat. Commun. 2022, 13, 305.

34

Lian, X. Z.; Chen, Y. P.; Liu, T. F.; Zhou, H. C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. 2016, 7, 6969–6973.

35

Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003, 300, 625–627.

36

Görbitz, C. H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of alzheimer's β-amyloid polypeptide. Chem. Commun. 2006, 2332–2334.

37

Yan, X. H.; Zhu, P. L.; Li, J. B. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 2010, 39, 1877–1890.

38

Raymond, D. M.; Nilsson, B. L. Multicomponent peptide assemblies. Chem. Soc. Rev. 2018, 47, 3659–3720.

39

Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; De La Paz, M. L.; Martins, I. C.; Reumers, J.; Morris, K. L.; Copland, A.; Serpell, L.; Serrano, L. et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods 2010, 7, 237–242.

40

Josephy, P. D.; Eling, T.; Mason, R. P. The horseradish peroxidase-catalyzed oxidation of 3, 5, 3', 5'-tetramethylbenzidine. free radical and charge-transfer complex intermediates. J. Biol. Chem. 1982, 257, 3669–3675.

41

Arcus, V. L.; Prentice, E. J.; Hobbs, J. K.; Mulholland, A. J.; Van Der Kamp, M. W.; Pudney, C. R.; Parker, E. J.; Schipper, L. A. On the temperature dependence of enzyme-catalyzed rates. Biochemistry 2016, 55, 1681–1688.

42

Berglund, G. I.; Carlsson, G. H.; Smith, A. T.; Szöke, H.; Henriksen, A.; Hajdu, J. The catalytic pathway of horseradish peroxidase at high resolution. Nature 2002, 417, 463–468.

43

Shkirman, S. F.; Solov'ev, K. N.; Kachura, T. F.; Arabei, S. A.; Skakovskii, E. D. Interpretation of the soret band of porphyrins based on the polarization spectrum of N-methyltetraphenylporphin fluorescence. J. Appl. Spectrosc. 1999, 66, 68–75.

44

Dolphin, D.; Forman, A.; Borg, D. C.; Felton, J. Compounds i of catalase and horse radish peroxidase: π-cation radicals. Proc. Natl. Acad. Sci. USA 1971, 68, 614–618.

45

Dunford, H. B.; Stillman, J. S. On the function and mechanism of action of peroxidases. Coord. Chem. Rev. 1976, 19, 187–251.

46

Yeh, H. C.; Hsu, P. Y.; Wang, J. S.; Tsai, A. L.; Wang, L. H. Characterization of heme environment and mechanism of peroxide bond cleavage in human prostacyclin synthase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2005, 1738, 121–132.

47

Gumiero, A.; Metcalfe, C. L.; Pearson, A. R.; Raven, E. L.; Moody, P. C. E. Nature of the ferryl heme in compounds I and II. J. Biol. Chem. 2011, 286, 1260–1268.

48

Critchlow, J. E.; Dunford, H. B. Studies on horseradish peroxidase: X. The mechanism of the oxidation of p-cresol, ferrocyanide, and iodide by compound II. J. Biol. Chem. 1972, 247, 3714–3725.

49

Hernández-Ruiz, J.; Arnao, M. B.; Hiner, A. N. P.; García-Cánovas, F.; Acosta, M. Catalase-like activity of horseradish peroxidase: Relationship to enzyme inactivation by H2O2. Biochem. J. 2001, 354, 107–114.

50

Patterson, D. P.; Prevelige, P. E.; Douglas, T. Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage p22. ACS Nano 2012, 6, 5000–5009.

51

Zhang, Y. F.; Tsitkov, S.; Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade. Nat. Commun. 2016, 7, 13982.

52

Liu, Q.; Wang, H.; Shi, X. H.; Wang, Z. G.; Ding, B. Q. Self-assembled DNA/peptide-based nanoparticle exhibiting synergistic enzymatic activity. ACS Nano 2017, 11, 7251–7258.

53

Wang, Z. G.; Wang, H.; Liu, Q.; Duan, F. Y.; Shi, X. H.; Ding, B. Q. Designed self-assembly of peptides with G-Quadruplex/hemin DNAzyme into nanofibrils possessing enzyme-mimicking active sites and catalytic functions. ACS Catal. 2018, 8, 7016–7024.

Nano Research
Pages 4032-4038
Cite this article:
Du P, Liu S, Sun H, et al. Designed histidine-rich peptide self-assembly for accelerating oxidase-catalyzed reactions. Nano Research, 2022, 15(5): 4032-4038. https://doi.org/10.1007/s12274-022-4209-6
Topics:

903

Views

8

Crossref

9

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 29 December 2021
Revised: 28 January 2022
Accepted: 30 January 2022
Published: 06 March 2022
© Tsinghua University Press 2022
Return