AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications

Junda Shen1,2,3,§Peng Du4,§Binbin Zhou1,3,5,§Guobin Zhang1,3,5Xinxue Tang1,2,3Jie Pan1,2,3Bo Li1,2,3Jingyang Zhang5Jian Lu1,2,5,6( )Yang Yang Li1,2,3,5( )
Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Center for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518000, China
CityU-Shenzhen Futian Research Institute, 3rd Binlang Road, Shenzhen-Hong Kong International Science and Technology Park, Futian District, Shenzhen 518000, China

§ Junda Shen, Peng Du, and Binbin Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

The novel hydrogel features high ionic conductivity, high resistance to swelling, and extraordinary anti-freezing property, holding great promise for applications in different practical scenarios in cold environment.

Abstract

Mineral hydrogels have caught a lot of attention for their strong competency as artificial skin-like materials. Nonetheless, it remains a great difficulty in fulfilling in one hydrogel system a range of key functionalities that are needed for practical artificial skin applications, i.e., to be biocompatible, strain-sensitive, ion-conductive, elastic and robust, anti-swelling, and anti-freezing. Here we present a such type of versatile hydrogel that is not only capable to deliver all the above-mentioned key functionalities but also highly stable. This novel hydrogel is constructed by introducing a gelatinous and amorphous multi-ionic biomineral (denoted as Mg-ACCP, containing Mg2+, Ca2+, CO32−, and PO43−) into the network of biocompatible polyvinyl alcohol (PVA) and sodium alginate (SA). The presence of Mg2+ and PO43− in this hydrogel helps prohibit the crystallization of the biominerals, leading to significantly improved stability. The hydrogel thus obtained delivers excellent mechanical performance due to the chelation between the mineral ions and the organic matrix, and high sensitivity even to subtle pressure and strain applied, such as slight finger bending and gentle tapping. Furthermore, the novel hydrogel features high ionic conductivity, high resistance to swelling, and extraordinary anti-freezing property, holding great promise for applications in different practical scenarios, particularly in aqueous or cold environments.

Electronic Supplementary Material

Download File(s)
12274_2022_4213_MOESM1_ESM.pdf (512.1 KB)

References

1

Zhang, X. T.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Hybrid materials from ultrahigh-inorganic-content mineral plastic hydrogels: Arbitrarily shapeable, strong, and tough. Adv. Funct. Mater. 2020, 30, 1910425.

2

Yan, N. N.; Zheng, Z. Y.; Liu, Y. L.; Jiang, X. Z.; Wu, J. M.; Feng, M.; Xu, L.; Guan, Q. B.; Li, H. T. Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials. Nano Res. 2021, 15, 1383–1392.

3

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

4

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

5

Xu, X. W.; Chen, Y. C.; He, P.; Wang, S.; Ling, K.; Liu, L. H.; Lei, P. F.; Huang, X. J.; Zhao, H.; Cao, J. Y. et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021, 14, 2875–2883.

6

Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

7

Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

8

Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779.

9

Meldrum, F. C.; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432.

10

Gal, A.; Habraken, W.; Gur, D.; Fratzl, P.; Weiner, S.; Addadi, L. Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. Angew. Chem., Int. Ed. 2013, 52, 4867–4870.

11

Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

12

Oaki, Y.; Kajiyama, S.; Nishimura, T.; Imai, H.; Kato, T. Nanosegregated amorphous composites of calcium carbonate and an organic polymer. Adv. Mater. 2008, 20, 3633–3637.

13

Addadi, L.; Raz, S.; Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 2003, 15, 959–970.

14

Politi, Y.; Arad, T.; Klein, E.; Weiner, S.; Addadi, L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 2004, 306, 1161–1164.

15

Aizenberg, J.; Lambert, G.; Weiner, S.; Addadi, L. Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J. Am. Chem. Soc. 2002, 124, 32–39.

16

Albéric, M.; Bertinetti, L.; Zou, Z. Y.; Fratzl, P.; Habraken, W.; Politi, Y. The crystallization of amorphous calcium carbonate is kinetically governed by ion impurities and water. Adv. Sci. 2018, 5, 1701000.

17

Kanasan, N.; Adzila, S.; Koh, C. T.; Rahman, H. A.; Panerselvan, G. Effects of magnesium doping on the properties of hydroxyapatite/sodium alginate biocomposite. Adv. Appl. Ceram. 2019, 118, 381–386.

18

Finnemore, A.; Cunha, P.; Shean, T.; Vignolini, S.; Guldin, S.; Oyen, M.; Steiner, U. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 2012, 3, 966.

19

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

20

Sun, S. T.; Mao, L. B.; Lei, Z. Y.; Yu, S. H.; Cölfen, H. Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for "mineral plastics". Angew. Chem., Int. Ed. 2016, 55, 11765–11769.

21

Al-Sawalmih, A.; Li, C. H.; Siegel, S.; Fratzl, P.; Paris, O. On the stability of amorphous minerals in lobster cuticle. Adv. Mater. 2009, 21, 4011–4015.

22

Ye, H.; Huang, J.; Xu, J. J.; Kodiweera, N. K. A. C.; Jayakody, J. R. P.; Greenbaum, S. G. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J. Power Sources 2008, 178, 651–660.

23

Topuz, F.; Henke, A.; Richtering, W.; Groll, J. Magnesium ions and alginate do form hydrogels: A rheological study. Soft Matter 2012, 8, 4877–4881.

24

Wang, Y. J.; Yang, X. J.; Li, H. Y.; Tu, W. Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Polym. Degrad. Stabil. 2006, 91, 2408–2414.

25

Bhajantri, R. F.; Ravindrachary, V.; Harisha, A.; Crasta, V.; Nayak, S. P.; Poojary, B. Microstructural studies on BaCl2 doped poly(vinyl alcohol). Polymer 2006, 47, 3591–3598.

26

Guo, S. H.; Li, X. H.; Li, J.; Wei, B. Q. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 2021, 12, 1343.

27

Guo, S. H.; Li, Y. H.; Tang, S. W.; Zhang, Y. Y.; Li, X. H.; Sobrido, A. J.; Titirici, M. M.; Wei, B. Q. Monitoring hydrogen evolution reaction intermediates of transition metal dichalcogenides via operando Raman spectroscopy. Adv. Funct. Mater. 2020, 30, 2003035.

28

Fan, L. H.; Du, Y. M.; Huang, R. H.; Wang, Q.; Wang, X. H.; Zhang, L. N. Preparation and characterization of alginate/gelatin blend fibers. J. Appl. Polym. Sci. 2005, 96, 1625–1629.

29

Zhou, B. B.; Li, S. F.; Tang, X. H.; Li, P.; Cao, X. M.; Yu, B. R.; Yang, L. B.; Liu, J. H. Real-time monitoring of plasmon-induced proton transfer of hypoxanthine in serum. Nanoscale 2017, 9, 12307–12310.

30

Fabryanty, R.; Valencia, C.; Soetaredjo, F. E.; Putro, J. N.; Santoso, S. P.; Kurniawan, A.; Ju, Y. H.; Ismadji, S. Removal of crystal violet dye by adsorption using bentonite - alginate composite. J. Environ. Chem. Eng. 2017, 5, 5677–5687.

31

Zhou, B. B.; Mao, M.; Cao, X. M.; Ge, M. H.; Tang, X. H.; Li, S. F.; Lin, D. Y.; Yang, L. B.; Liu, J. H. Amphiphilic functionalized acupuncture needle as SERS sensor for in situ multiphase detection. Anal. Chem. 2018, 90, 3826–3832.

32

Xue, X.; He, Z. Z.; Liu, J. Detection of water-ice phase transition based on Raman spectrum. J. Raman Spectrosc. 2013, 44, 1045–1048.

33

Xu, L. J.; Wang, C.; Cui, Y.; Li, A. L.; Qiao, Y.; Qiu, D. Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci. Adv. 2019, 5, eaau3442.

34

Yang, Y. Y.; Wang, X.; Yang, F.; Wang, L. N.; Wu, D. C. Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv. Mater. 2018, 30, 1707071.

35

Zhao, L. Z.; Zhou, C. H.; Wang, J.; Tong, D. S.; Yu, W. H.; Wang, H. Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter 2015, 11, 9229–9246.

36

Yeo, J. C.; Yu, J. H.; Koh, Z. M.; Wang, Z. P.; Lim, C. T. Wearable tactile sensor based on flexible microfluidics. Lab Chip 2016, 16, 3244–3250.

37

Ge, G.; Zhang, Y. Z.; Shao, J. J.; Wang, W. J.; Si, W. L.; Huang, W.; Dong, X. C. Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 2018, 28, 1802576.

38

Wang, X. D.; Zhang, H. L.; Dong, L.; Han, X.; Du, W. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 2016, 28, 2896–2903.

Nano Research
Pages 6655-6661
Cite this article:
Shen J, Du P, Zhou B, et al. An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications. Nano Research, 2022, 15(7): 6655-6661. https://doi.org/10.1007/s12274-022-4213-x
Topics:

1145

Views

20

Crossref

19

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 01 December 2021
Revised: 18 January 2022
Accepted: 07 February 2022
Published: 22 March 2022
© Tsinghua University Press 2022
Return