Graphical Abstract

Flexible and lightweight thermal insulation materials with hierarchical microstructures are ubiquitous in thermal management and protection systems. Ceramic aerogels promise high-temperature thermal insulation but lack mechanical robustness, while the fibrous materials with excellent mechanical elasticity display modest thermal insulation. Here we describe flexible hierarchical superhydrophobic ceramic insulation nanocomposites through the densified architectured hierarchical nanostructures, radiative insulation coating, and interfacial cross-linking among composites. The lightweight flexible ceramic nanocomposites exhibit a density of 0.13 g/cm3, high-temperature fire resistance with thermal conductivity of 0.024 W/(m·K), and super-hydrophobicity with the water contact angle of 152°. The mechanical robustness and high-temperature thermal insulation of ceramic nanocomposites, together with its soundproof performance, shed light on the low-cost flexible insulation materials manufacturing with scalability for high-temperature thermal insulation applications under high mechanical loading conditions.
Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283.
Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.
Wang, H. L.; Zhang, X.; Wang, N.; Li, Y.; Feng, X.; Huang, Y.; Zhao, C. S.; Liu, Z. L.; Fang, M. H.; Ou, G. et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci. Adv. 2017, 3, e1603170.
Krasnovskih, M. P.; Maksimovich, N. G.; Vaisman, Y. I.; Ketov, A. A. Thermal stability of mineral-wool heat-insulating materials. Russ. J. Appl. Chem. 2014, 87, 1430–1434.
Linhares, T.; Pessoa de Amorim, M. T.; Durães, L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications. J. Mater. Chem. A 2019, 7, 22768–22802.
Kistler, S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741.
Dilamian, M.; Joghataei, M.; Ashrafi, Z.; Bohr, C.; Mathur, S.; Maleki, H. From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Appl. Mater. Today 2021, 22, 100964.
Xu, X.; Fu, S. B.; Guo, J. R.; Li, H.; Huang, Y.; Duan, X. F. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 2021, 42, 162–177.
Meador, M. A. B.; Vivod, S. L.; McCorkle, L.; Quade, D.; Sullivan, R. M.; Ghosn, L. J.; Clark, N.; Capadona, L. A. Reinforcing polymer cross-linked aerogels with carbon nanofibers. J. Mater. Chem. 2008, 18, 1843–1852.
Meador, M. A. B.; Fabrizio, E. F.; Ilhan, F.; Dass, A.; Zhang, G. H.; Vassilaras, P.; Johnston, J. C.; Leventis, N. Cross-linking amine-modified silica aerogels with epoxies: Mechanically strong lightweight porous materials. Chem. Mater. 2005, 17, 1085–1098.
Hasegawa, G.; Shimizu, T.; Kanamori, K.; Maeno, A.; Kaji, H.; Nakanishi, K. Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: Insights into the origin of their mechanical properties. Chem. Mater. 2017, 29, 2122–2134.
Li, Z.; Gong, L. L.; Cheng, X. D.; He, S.; Li, C. C.; Zhang, H. P. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater. Des. 2016, 99, 349–355.
Dou, L. Y.; Cheng, X. T.; Zhang, X. X.; Si, Y.; Yu, J. Y.; Ding, B. Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J. Mater. Chem. A 2020, 8, 7775–7783.
Hayase, G.; Kanamori, K.; Abe, K.; Yano, H.; Maeno, A.; Kaji, H.; Nakanishi, K. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. ACS Appl. Mater. Interfaces 2014, 6, 9466–9471.
He, J.; Li, X. L.; Su, D.; Ji, H. M.; Wang, X. J. Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J. Eur Ceram. Soc. 2016, 36, 1487–1493.
Hou, X. B.; Zhang, R. B.; Fang, D. N. An ultralight silica-modified ZrO2–SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength. Scr. Mater. 2018, 143, 113–116.
Yang, X. G.; Wei, J.; Shi, D. Q.; Sun, Y. T.; Lv, S. Q.; Feng, J.; Jiang, Y. G. Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel. Mater. Sci. Eng. A 2014, 609, 125–130.
Bhuiya, M. H.; Anderson, A. M.; Carroll, M. K.; Bruno, B. A.; Ventrella, J. L.; Silberman, B.; Keramati, B. Preparation of monolithic silica aerogel for fenestration applications: Scaling up, reducing cycle time, and improving performance. Ind. Eng. Chem. Res. 2016, 55, 6971–6981.
Anderson, A. M.; Wattley, C. W.; Carroll, M. K. Silica aerogels prepared via rapid supercritical extraction: Effect of process variables on aerogel properties. J. Non-Cryst. Solids 2009, 355, 101–108.
Yang, R. Z.; Hu, F.; An, L.; Armstrong, J.; Hu, Y.; Li, C. N.; Huang, Y. L.; Ren, S. Q. A hierarchical mesoporous insulation ceramic. Nano Lett. 2020, 20, 1110–1116.
Han, X.; Hassan, K. T.; Harvey, A.; Kulijer, D.; Oila, A.; Hunt, M. R. C.; Šiller, L. Bioinspired synthesis of monolithic and layered aerogels. Adv. Mater. 2018, 30, 1706294.
Yang, R. Z.; Wang, J. Y.; An, L.; Petit, D.; Armstrong, J. N.; Liu, Y. Z.; Huang, Y. L.; Hu, Y.; Shao, Z. F.; Ren, S. Q. A macromolecular assembly directed ceramic aerogel monolith material. J. Mater. Chem. C 2020, 8, 10319–10324.
Espinosa, Y. R.; Grigera, R. J.; Ferrara, C. G. Mechanisms associated with the effects of urea on the micellar structure of sodium dodecyl sulphate in aqueous solutions. Prog. Biophys. Mol. Biol. 2018, 140, 117–123.
An, L.; Wang, J. Y.; Petit, D.; Armstrong, J. N.; Li, C. M.; Hu, Y.; Huang, Y. L.; Shao, Z. F.; Ren, S. Q. A scalable crosslinked fiberglass-aerogel thermal insulation composite. Appl. Mater. Today 2020, 21, 100843.
Maleki, H.; Montes, S.; Hayati-Roodbari, N.; Putz, F.; Huesing, N. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure—An approach towards 3D printing of aerogels. ACS Appl. Mater. Interfaces 2018, 10, 22718–22730.
An, L.; Zhang, D.; Zhang, L.; Feng, G. Effect of nanoparticle size on the mechanical properties of nanoparticle assemblies. Nanoscale 2019, 11, 9563–9573.
Berardi, U.; Zaidi, S. Characterization of commercial aerogel-enhanced blankets obtained with supercritical drying and of a new ambient pressure drying blanket. Energy Buildings 2019, 198, 542–552.
Li, Z.; Cheng, X. D.; He, S.; Shi, X. J.; Gong, L. L.; Zhang, H. P. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 84, 316–325.
Kunjalukkal Padmanabhan, S.; Ul Haq, E.; Licciulli, A. Synthesis of silica cryogel-glass fiber blanket by vacuum drying. Ceram. Int. 2016, 42, 7216–7222.
Feng, J. Z.; Feng, J.; Zhang, C. R. Thermal conductivity of low density carbon aerogels. J. Porous Mater. 2012, 19, 551–556.
Hu, F.; Wu, S. Y.; Sun, Y. G. Hollow-structured materials for thermal insulation. Adv. Mater. 2019, 31, 1801001.
Hayase, G.; Kugimiya, K.; Ogawa, M.; Kodera, Y.; Kanamori, K.; Nakanishi, K. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J. Mater. Chem. A 2014, 2, 6525–6531.
Lee, O. J.; Lee, K. H.; Jin Yim, T.; Young Kim, S.; Yoo, K. P. Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Cryst. Solids 2002, 298, 287–292.
Xie, T.; He, Y. L.; Hu, Z. J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int. J. Heat Mass Transf. 2013, 58, 540–552.
Zhao, J. J.; Duan, Y. Y.; Wang, X. D.; Wang, B. X. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation. Int. J. Heat Mass Transf. 2012, 55, 5196–5204.
An, L.; Wang, J. Y.; Petit, D.; Armstrong, J. N.; Hanson, K.; Hamilton, J.; Souza, M.; Zhao, D. H.; Li, C. N.; Liu, Y. Z. et al. An all-ceramic, anisotropic, and flexible aerogel insulation material. Nano Lett. 2020, 20, 3828–3835.
Dou, L. Y.; Zhang, X. X.; Cheng, X. T.; Ma, Z. M.; Wang, X. Q.; Si, Y.; Yu, J. Y.; Ding, B. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 2019, 11, 29056–29064.
Fan, W.; Zhang, X.; Zhang, Y.; Zhang, Y. F.; Liu, T. X. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 2019, 173, 47–52.
Yu, Z. L.; Yang, N.; Apostolopoulou-Kalkavoura, V.; Qin, B.; Ma, Z. Y.; Xing, W. Y.; Qiao, C.; Bergström, L.; Antonietti, M.; Yu, S. H. Fire-retardant and thermally insulating phenolic-silica aerogels. Angew. Chem., Int. Ed. 2018, 57, 4538–4542.
Rettelbach, T.; Sauberlich, J.; Korder, S.; Fricke, J. Thermal conductivity of IR-opacified silica aerogel powders between 10 K and 275 K. J. Phys. D Appl. Phys. 1995, 28, 581–587.
Zhao, J. J.; Duan, Y. Y.; Wang, X. D.; Zhang, X. R.; Han, Y. H.; Gao, Y. B.; Lv, Z. H.; Yu, H. T.; Wang, B. X. Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int. J. Therm. Sci. 2013, 70, 54–64.
Wu, S. W.; Du, Y. J.; Alsaid, Y.; Wu, D.; Hua, M. T.; Yan, Y. C.; Yao, B. W.; Ma, Y. F.; Zhu, X. Y.; He, X. M. Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl. Acad. Sci. USA 2020, 117, 11240–11246.
Hu, F.; An, L.; Li, C. N.; Liu, J.; Ma, G. B.; Hu, Y.; Huang, Y. L.; Liu, Y. Z.; Thundat, T.; Ren, S. Q. Transparent and flexible thermal insulation window material. Cell Rep. Phys. Sci. 2020, 1, 100140.
Deng, X.; Mammen, L.; Butt, H. J.; Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335, 67–70.
Cao, L. T.; Si, Y.; Wu, Y. Y.; Wang, X. Q.; Yu, J. Y.; Ding, B. Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale 2019, 11, 2289–2298.
Oh, K.; Kim, D. K.; Kim, S. H. Ultra-porous flexible PET/aerogel blanket for sound absorption and thermal insulation. Fiber. Polym. 2009, 10, 731–737.
Putra, A.; Or, K. H.; Selamat, M. Z.; Nor, M. J. M.; Hassan, M. H.; Prasetiyo, I. Sound absorption of extracted pineapple-leaf fibres. Appl. Acoust. 2018, 136, 9–15.