Graphical Abstract

The utilization of perovskites as photocatalysts to convert CO2 into fuels and chemicals has received wide attention recently. However, their instability in water hinders their long-term application for overall photocatalytic CO2 reduction. Herein, we integrate the water-stable perovskite-like organolead iodide crystalline material [Pb8I8(H2O)3]8+[–O2C(CH2)4CO2–]4 (TJU-16) with Au co-catalyst for photocatalytic CO2 reduction in aqueous solution without sacrificial reagent. Under the AM 1.5 G simulated illumination, the TJU-16 with 0.19 wt.‰ Au co-catalyst steadily generated electrons for CO2 reduction reaction, which was 2.2 times of pure TJU-16. The Au0.19/TJU-16 catalyzed CO2 reduction at a rate of 84.2 μmol·g−1·h−1, and achieved a solar-to-fuel (STF) conversion efficiency of 0.034%. Our work will motivate the rational design of water-stable perovskite-like materials for photocatalytic applications.
Chen, J.; Dong, C. W.; Idriss, H.; Mohammed, O. F.; Bakr, O. M. Metal halide perovskites for solar-to-chemical fuel conversion. Adv. Energy Mater. 2020, 10, 1902433.
Shyamal, S.; Pradhan, N. Halide perovskite nanocrystal photocatalysts for CO2 reduction: Successes and challenges. J. Phys. Chem. Lett. 2020, 11, 6921–6934.
Ahmed, G. H.; Yin, J.; Bakr, O. M.; Mohammed, O. F. Successes and challenges of core/shell lead halide perovskite nanocrystals. ACS Energy Lett. 2021, 6, 1340–1357.
Spanopoulos, I.; Hadar, I.; Ke, W. J.; Guo, P. J.; Sidhik, S.; Kepenekian, M.; Even, J.; Mohite, A. D.; Schaller, R. D.; Kanatzidis, M. G. Water-stable 1D hybrid tin(II) iodide emits broad light with 36% photoluminescence quantum efficiency. J. Am. Chem. Soc. 2020, 142, 9028–9038.
Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.
Guan, W. H.; Li, Y.; Zhong, Q. X.; Liu, H. Y.; Chen, J. N.; Hu, H. C.; Lv, K. X.; Gong, J.; Xu, Y.; Kang, Z. H. et al. Fabricating MAPbI3/MoS2 composites for improved photocatalytic performance. Nano Lett. 2021, 21, 597–604.
Zhou, P.; Chen, H.; Chao, Y. G.; Zhang, Q. H.; Zhang, W. Y.; Lv, F.; Gu, L.; Zhao, Q.; Wang, N.; Wang, J. S.; Guo, S. J. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nat. Commun. 2021, 12, 4412.
Pornrungroj, C.; Andrei, V.; Rahaman, M.; Uswachoke, C.; Joyce, H. J.; Wright, D. S.; Reisner, E. Bifunctional perovskite-BiVO4 tandem devices for uninterrupted solar and electrocatalytic water splitting cycles. Adv. Funct. Mater. 2021, 31, 2008182.
Wang, H.; Zhang, H. F.; Wang, J. H.; Gao, Y. Y.; Fan, F. T.; Wu, K. F.; Zong, X.; Li, C. Mechanistic understanding of efficient photocatalytic H2 evolution on two-dimensional layered lead iodide hybrid perovskites. Angew. Chem., Int. Ed. 2021, 60, 7376–7381.
Chen, Y. H.; Ye, J. K.; Chang, Y. J., Liu, T. W.; Chuang, Y. H.; Liu, W. R.; Liu, S. H.; Pu, Y. C. Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures. Appl. Catal. B:Environ. 2021, 284, 119751.
Mu, Y. F.; Zhang, C.; Zhang, M. R.; Zhang, W.; Zhang, M.; Lu, T. B. Direct Z-scheme heterojunction of ligand-free FAPbBr3/α-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 22314–22322.
Xu, Y.; Zhang, W.; Su, K.; Feng, Y. X.; Mu, Y. F.; Zhang, M.; Lu, T. B. Glycine-functionalized CsPbBr3 nanocrystals for efficient visible-light photocatalysis of CO2 reduction. Chem.—Eur. J. 2021, 27, 2305–2309.
Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.
Mu, Y. F.; Zhang, W.; Dong, G. X.; Su, K.; Zhang, M.; Lu, T. B. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 2020, 16, 2002140.
Cheng, R. L.; Jin, H. D.; Roeffaers, M. B. J.; Hofkens, J.; Debroye, E. Incorporation of cesium lead halide perovskites into g-C3N4 for photocatalytic CO2 reduction. ACS Omega 2020, 5, 24495–24503.
Wang, Y. Y.; Huang, H. L.; Zhang, Z. Z.; Wang, C.; Yang, Y. Y.; Li, Q.; Xu, D. S. Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2021, 282, 119570.
Chen, Z. J.; Hu, Y. G.; Wang, J.; Shen, Q.; Zhang, Y. H.; Ding, C.; Bai, Y.; Jiang, G. C.; Li, Z. Q.; Gaponik N. Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes. Chem. Mater. 2020, 32, 1517–1525.
Wang, Q.; Wang, J.; Wang, J. C.; Hu, X.; Bai, Y.; Zhong, X. H.; Li, Z. Q. Coupling CsPbBr3 quantum dots with covalent triazine frameworks for visible-light-driven CO2 reduction. ChemSusChem 2021, 14, 1131–1139.
Bera, S.; Shyamal, S.; Pradhan, N. Chemically spiraling CsPbBr3 perovskite nanorods. J. Am. Chem. Soc. 2021, 143, 14895–14906.
Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.
Xu, Y. F.; Yang, M. Z.; Chen, H. Y.; Liao, J. F.; Wang, X. D.; Kuang, D. B. Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet schottky-junction photocatalyst. ACS Appl. Energy Mater. 2018, 1, 5083–5089.
Que, M. D.; Zhao, Y.; Yang, Y. W.; Pan, L. K.; Lei, W. Y.; Cai, W. H.; Yuan, H. D.; Chen, J.; Zhu, G. Q. Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 2021, 13, 6180–6187.
Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.
Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491–9495.
Ou, M.; Tu, W. G.; Yin, S. M.; Xing, W. N.; Wu, S. Y.; Wang, H. J.; Wan, S. P.; Zhong, Q.; Xu, R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem. 2018, 130, 13758–13762.
Su, K.; Dong, G. X.; Zhang, W.; Liu, Z. L.; Zhang, M.; Lu, T. B. In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 50464–50471.
Song, X. L.; Wei, G. F.; Sun, J.; Peng, C. D.; Yin, J. L.; Zhang, X.; Jiang, Y. L.; Fei, H. H. Overall photocatalytic water splitting by an organolead iodide crystalline material. Nat. Catal. 2020, 3, 1027–1033.
Li, R. G.; Han, H. X.; Zhang, F. X.; Wang, D. E.; Li, C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ. Sci. 2014, 7, 1369–1376.
Lin, F.; Wang, D. E.; Jiang, Z. X.; Ma, Y.; Li, J.; Li, R. G.; Li, C. Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 2012, 5, 6400–6406.
Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441.