AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An isolation strategy to anchor atomic Ni or Co cocatalysts on TiO2(A) for photocatalytic hydrogen production

Shangchun Lv1Mengxi Pei1Yuxiang Liu1,2Zhichun Si1( )Xiaodong Wu2Rui Ran2Duan Weng1,2Feiyu Kang1,2( )
International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

A ethylene diamine tetraacetic acid and ethylene glycol (EDTA-EG) compound method was developed for the preparation of single atomic (SA) Ni2+ and Co2+ doped SA/TiO2(A) catalyst with a ultra-thin two-dimensional (2D) “skin-body” heterojunction.

Abstract

TiO2 has been considered as an ideal photocatalyst for water splitting. However, narrow light absorbance, low charge separation efficiency, and rare surface active sites lead to the low photocatalytic efficiency of TiO2. Although extensive research attempted to improve the situation, there is still lack of method for constructing high active and noble-metal-free TiO2 photocatalyst for H2 evolution reactions (HER). In this work, we loaded single atomic (SA) Ni (or Co) on the surface of anatase TiO2 (TiO2(A)) nanosheets by an isolation strategy. Ethylene diamine tetraacetic acid and ethylene glycol (EDTA-EG) compounds were used to chelate metal ions in solution and form carbon quantum dots in the following thermal treatment to isolate the metal ions on surface of TiO2(A). The prepared Ni SA/TiO2(A) catalyst owned a “skin wrapped body” structure with in-situ formed two-dimensional (2D) heterojunction facilitating the fast electron transfer. As a result, the Ni SA/TiO2(A) catalyst showed a high H2 evolution rate of 2,900 μmol·g−1·h−1. This work provides an isolation strategy for constructing promising single-atom metal catalyst for photocatalysis and beyond.

Electronic Supplementary Material

Download File(s)
12274_2022_4217_MOESM1_ESM.pdf (925.9 KB)

References

1

Xiang, G. L.; Li, T. Y.; Zhuang, J.; Wang, X. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem. Commun. 2010, 46, 6801–6803.

2

Wang, P.; Yi, Z. X.; Zhang, J. J.; Cai, Z. Y.; Lyu, B.; Yang, J. H.; Wang, X. Y. In-situ photosynthetic route to tailor point defects in TiO2(B) nanosheets for visible light-driven photocatalytic hydrogen production. ChemCatChem 2019, 11, 4252–4255.

3

Di, T. M.; Zhang, J. F.; Cheng, B.; Yu, J. G.; Xu, J. S. Hierarchically nanostructured porous TiO2(B) with superior photocatalytic CO2 reduction activity. Sci. China Chem. 2018, 61, 344–350.

4

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

5

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

6

Jin, S.; Ni, Y. X.; Hao, Z. M.; Zhang, K.; Lu, Y.; Yan, Z. H.; Wei, Y. J.; Lu, Y. R.; Chan, T. S.; Chen, J. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 21885–21889.

7

Liang, J. W.; Liu, Y. X.; Liu, R. Z.; Zheng, S. F.; Si, Z. C.; Weng, D.; Kang, F. Y. Stable Pt atomic clusters on carbon nanotubes grafted with carbon quantum dots as electrocatalyst for H2 evolution in acidic electrolyte. Nano Select 2021, 2, 2126–2134.

8

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

9

Tian, S. B.; Gong, W. B.; Chen, W. X.; Lin, N.; Zhu, Y. Q.; Feng, Q. C.; Xu, Q.; Fu, Q.; Chen, C.; Luo, J. et al. Regulating the catalytic performance of single-atomic-site Ir catalyst for biomass conversion by metal–support interactions. ACS Catal. 2019, 9, 5223–5230.

10

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

11

Thang, H. V.; Pacchioni, G.; Derita, L.; Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 2018, 367, 104–114.

12

Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084.

13
Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.
14

Kessler, F. K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X. C.; Bojdys, M. J. Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 17030.

15

Idriss, H. The elusive photocatalytic water splitting reaction using sunlight on suspended nanoparticles: Is there a way forward? Catal. Sci. Technol. 2020, 10, 304–310.

16

Canu, G.; Buscaglia, V. Hydrothermal synthesis of strontium titanate: Thermodynamic considerations, morphology control and crystallisation mechanisms. CrystEngComm 2017, 19, 3867–3891.

17

Shi, R.; Dai, X.; Li, W. F.; Lu, F.; Liu, Y.; Qu, H. H.; Li, H.; Chen, Q. Y.; Tian, H.; Wu, E. H. et al. Hydroxyl-group-dominated graphite dots reshape laser desorption/ionization mass spectrometry for small biomolecular analysis and imaging. ACS Nano 2017, 11, 9500–9513.

18

Wang, C.; Sun, M.; Zhao, Y. M.; Huo, M. X.; Wang, X. Z.; Elimelech, M. Photo-electrochemical osmotic system enables simultaneous metal recovery and electricity generation from wastewater. Environ. Sci. Technol. 2021, 55, 604–613.

19

Mamaghani, A. H.; Haghighat, F.; Lee, C. S. Photocatalytic degradation of VOCs on various commercial titanium dioxides: Impact of operating parameters on removal efficiency and by-products generation. Build. Environ 2018, 138, 275–282.

20

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

21

Yuan, W. Y.; Ma, Y. Y.; Wu, H.; Cheng, L. F. Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. J. Energy Chem. 2022, 65, 254–279.

22

Li, J. P.; Yang, S. W.; Deng, Y.; Chai, P. W.; Yang, Y. C.; He, X. Y.; Xie, X. M.; Kang, Z. H.; Ding, G. Q.; Zhou, H. F. et al. Emancipating target-functionalized carbon dots from autophagy vesicles for a novel visualized tumor therapy. Adv. Funct. Mater. 2018, 28, 1800881.

23

Ming, H.; Ma, Z.; Liu, Y.; Pan, K. M.; Yu, H.; Wang, F.; Kang, Z. H. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012, 41, 9526–9531.

24

Xiao, M.; Zhang, L.; Luo, B.; Lyu, M.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230–7234.

25

Yang, J. J.; Sun, Z. Z.; Yan, K. L.; Dong, H. Z.; Dong, H. Y.; Cui, J. K.; Gong, X. T.; Han, S. L.; Huang, L. M. Single-atom-nickel photocatalytic site-selective sulfonation of enamides to access amidosulfones. Green Chem. 2021, 2756–2762.

26

Antonietti, M.; Lopez-Salas, N.; Primo, A. Adjusting the structure and electronic properties of carbons for metal-free carbocatalysis of organic transformations. Adv. Mater. 2019, 31, 1805719.

27

Yan, Y. B.; Gong, J.; Chen, J.; Zeng, Z. P.; Huang, W.; Pu, K. Y.; Liu, J. Y.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, 1808283.

28

Tian, J. Q.; Chen, J.; Liu, J. Y.; Tian, Q. H.; Chen, P. Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy 2018, 48, 284–291.

29

Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.

30

Zhao, Q.; Sun, J.; Li, S. C.; Huang, C. P.; Yao, W. F.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. J. Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018, 8, 11863–11874.

31

Chen, J. Y.; Zhuang, P. Y.; Ge, Y. C.; Chu, H.; Yao, L. Y.; Cao, Y. D.; Wang, Z.; Chee, M. O. L.; Dong, P.; Shen, J. F. et al. Sublimation-vapor phase pseudomorphic transformation of template-directed MOFs for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1903875.

32

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

33

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

34

Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

35

Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801.

36

Delgado, D.; Solsona, B.; Sanchis, R.; Rodríguez-Castellón, E.; Nieto, J. M. L. Oxidative dehydrogenation of ethane on diluted or promoted nickel oxide catalysts: Influence of the promoter/diluter. Catal. Today 2021, 363, 27–35.

37

Liu, X. G.; Bi, Y. P. Synergistic effect of Ti3+ doping and facet regulation over Ti3+-doped TiO2 nanosheets with enhanced photoreactivity. Catal. Sci. Technol. 2018, 8, 3876–3882.

38

Zhang, Y. J.; Liu, J. M.; Zhang, Y.; Bi, Y. P. Relationship between interatomic electron transfer and photocatalytic activity of TiO2. Nano Energy 2018, 51, 504–512.

39

Xiao, H.; Xue, S. F.; Zhang, J. J.; Zhao, M.; Ma, J. C.; Chen, S.; Zheng, Z. F.; Jia, J. F.; Wu, H. S. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chem. Eng. J. 2021, 408, 127271.

40

Xu, A. W.; Gao, Y.; Liu, H. Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 2002, 207, 151–157.

41

Landon, J.; Demeter, E.; İnoğlu, N.; Keturakis, C.; Wachs, I. E.; Vasić, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793–1801.

42

Hu, C. C.; Wu, Y. R. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis. Mater. Chem. Phys. 2003, 82, 588–596.

43

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 128, 10958–10963.

44

Huang, D. H.; He, N.; Zhu, Q. H.; Chu, C. H.; Weon, S.; Rigby, K.; Zhou, X. C.; Xu, L.; Niu, J. F.; Stavitski, E. et al. Conflicting roles of coordination number on catalytic performance of single-atom Pt catalysts. ACS Catal. 2021, 11, 5586–5592.

Nano Research
Pages 5848-5856
Cite this article:
Lv S, Pei M, Liu Y, et al. An isolation strategy to anchor atomic Ni or Co cocatalysts on TiO2(A) for photocatalytic hydrogen production. Nano Research, 2022, 15(7): 5848-5856. https://doi.org/10.1007/s12274-022-4217-6
Topics:

1187

Views

30

Crossref

29

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 08 November 2021
Revised: 07 February 2022
Accepted: 08 February 2022
Published: 11 April 2022
© Tsinghua University Press 2022
Return