AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping

Jiahui Xu1,2Xuelian Wei1,2Ruonan Li3Yapeng Shi1,2Yating Peng1Zhiyi Wu1,2,4( )Zhong Lin Wang1,2,4,5( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
College of Nanoscience and Technology, University of Chinese Academy of Science, Beijing 100049, China
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
CUSTech Institute of Technology, Wenzhou 325024, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Show Author Information

Graphical Abstract

An efficient wooden substrate-based self-powered take-off board sensor (TBS) is fabricated, which is sensitive to monitor the real-time movements of athletes in the sport of triple-jumping.

Abstract

In the era of big data and the Internet of Things, the digital information of athletes is particularly significant in sports competitions. Here, an intelligent self-powered take-off board sensor (TBS) based on triboelectric nanogenerator (TENG) with a solid-wooden substrate is provided for precise detection of athletes’ take-off status in the sport of triple-jumping, which is sufficient for triple-jumping training judgment with a high accuracy of 1 mm. Meanwhile, a foul alarm system and a distance between the athlete’s foot and take-off line (GAP) measurement system are further developed to provide take-off data for athletes and referees. The induced charges are formed by the TBS during taking-off, and then the real-time exercise data is acquired and processed via the test program. This work presents a self-powered sports sensor for intelligent sports monitoring and promotes the application of TENG-based sensors in intelligent sports.

Electronic Supplementary Material

Video
12274_2022_4218_MOESM2_ESM.mp4
12274_2022_4218_MOESM3_ESM.mp4
Download File(s)
12274_2022_4218_MOESM1_ESM.pdf (566.9 KB)

References

1

Hsiao, Y. C.; Wu, M. H.; Li, S. C. Elevated performance of the smart city-A case study of the IoT by innovation mode. IEEE Trans. Eng. Manage. 2021, 68, 1461–1475.

2

Song, W.; Xu, M. M.; Dolma, Y. C. Design and implementation of beach sports big data analysis system based on computer technology. J. Coastal Res. 2019, 327–331.

3

Baerg, A. Big data, sport, and the digital divide: Theorizing how athletes might respond to big data monitoring. J. Sport Soc. Iss. 2017, 41, 3–20.

4

Bai, Z. B.; Bai, X. M. Sports big data: Management, analysis, applications, and challenges. Complexity 2021, 2021, 6676297.

5

Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.

6

Sommerville, R.; Shaw-Stewart, J.; Goodship, V.; Rowson, N.; Kendrick, E. A review of physical processes used in the safe recycling of lithium ion batteries. Sustainable Mater. Technol. 2020, 25, e00197.

7

Ali, H.; Khan, H. A.; Pecht, M. G. Circular economy of Li batteries: Technologies and trends. J. Energy Storage 2021, 40, 102690.

8

Bai, Y. C.; Muralidharan, N.; Sun, Y. K.; Passerini, S.; Stanley Whittingham, M.; Belharouak, I. Energy and environmental aspects in recycling lithium-ion batteries: Concept of battery identity global passport. Mater. Today 2020, 41, 304–315.

9

Peng, L.; Hu, L. F.; Fang, X. S. Energy harvesting for nanostructured self-powered photodetectors. Adv. Funct. Mater. 2014, 24, 2591–2610.

10

Leung, S. F.; Ho, K. T.; Kung, P. K.; Hsiao, V. K. S.; Alshareef, H. N.; Wang, Z. L.; He, J. H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611.

11

Liu, Q.; Wang, X. X.; Song, W. Z.; Qiu, H. J.; Zhang, J.; Fan, Z. Y.; Yu, M.; Long, Y. Z. Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl. Mater. Interfaces 2020, 12, 8288–8295.

12

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator!. Nano Energy 2012, 1, 328–334.

13

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

14

Zhu, G.; Peng, B.; Chen, J.; Jing, Q. S.; Wang, Z. L. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 2015, 14, 126–138.

15

Dagdeviren, C.; Li, Z.; Wang, Z. L. Energy harvesting from the animal/human body for self-powered electronics. Annu. Rev. Biomed. Eng. 2017, 19, 85–108.

16

Dzhardimalieva, G. I.; Yadav, B. C.; Lifintseva, T. Y. V.; Uflyand, I. E. Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. Eur. Polym. J. 2021, 142, 110163.

17

Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.

18

Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.

19

Wang, J. Y.; Pan, L.; Guo, H. Y.; Zhang, B. B.; Zhang, R. R.; Wu, Z. Y.; Wu, C. S.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv. Energy Mater. 2019, 9, 1802892.

20

Yao, Y. Y.; Jiang, T.; Zhang, L. M.; Chen, X. Y.; Gao, Z. L.; Wang, Z. L. Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interfaces 2016, 8, 21398–21406.

21

Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.

22

Huang, L. B.; Xu, W.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Hao, J. H. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42.

23

Liu, S. M.; Li, X.; Wang, Y. Q.; Yang, Y. F.; Meng, L. X.; Cheng, T. H.; Wang, Z. L. Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy 2021, 83, 105851.

24

Wang, Q.; Zou, H. X.; Zhao, L. C.; Li, M.; Wei, K. X.; Huang, L. P.; Zhang, W. M. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Appl. Phys. Lett. 2020, 117, 043902.

25

Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

26

Bian, Y. X.; Jiang, T.; Xiao, T. X.; Gong, W. P.; Cao, X.; Wang, Z. N.; Wang, Z. L. Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel. Adv. Mater. Technol. 2018, 3, 1700317.

27

Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.

28

Zhong, W.; Xu, L.; Zhan, F.; Wang, H. M.; Wang, F.; Wang, Z. L. Dripping channel based liquid triboelectric nanogenerators for energy harvesting and sensing. ACS Nano 2020, 14, 10510–10517.

29

Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

30

Gong, W.; Hou, C. Y.; Guo, Y. B.; Zhou, J.; Mu, J. K.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy 2017, 39, 673–683.

31

Wu, H. Z.; Tatarenko, A.; Bichurin, M. I.; Wang, Y. J. A multiferroic module for biomechanical energy harvesting. Nano Energy 2021, 83, 105777.

32

Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.

33

Guo, H. Y.; Yeh, M. H.; Zi, Y. L.; Wen, Z.; Chen, J.; Liu, G. L.; Hu, C. G.; Wang, Z. L. Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 2017, 11, 4475–4482.

34

Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2021, 4, 147–153.

35

Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.

36

Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.

37

Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

38

Pu, X. J.; Tang, Q.; Chen, W. S.; Huang, Z. Y.; Liu, G. L.; Zeng, Q. X.; Chen, J.; Guo, H. Y.; Xin, L. M.; Hu, C. G. Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 2020, 76, 105047.

39

Qin, K.; Chen, C.; Pu, X. J.; Tang, Q.; He, W. C.; Liu, Y. K.; Zeng, Q. X.; Liu, G. L.; Guo, H. Y.; Hu, C. G. Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 2021, 13, 51.

40

Huang, P.; Wen, D. L.; Qiu, Y.; Yang, M. H.; Tu, C.; Zhong, H. S.; Zhang, X. S. Textile-based triboelectric nanogenerators for wearable self-powered microsystems. Micromachines 2021, 12, 158.

41

Li, S. M.; Wang, J.; Peng, W. B.; Lin, L.; Zi, Y. L.; Wang, S. H.; Zhang, G.; Wang, Z. L. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 2017, 7, 1602832.

42

Pu, X.; Li, L. X.; Liu, M. M.; Jiang, C. Y.; Du, C. H.; Zhao, Z. F.; Hu, W. G.; Wang, Z. L. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 2016, 28, 98–105.

43

Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. S.; Lee, J. H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S. W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.

44

Li, Z.; Zheng, Q.; Wang, Z. L.; Li, Z. Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020, 2020, 8710686.

45

Yu, B.; Yu, H.; Wang, H. Z.; Zhang, Q. H.; Zhu, M. F. High-power triboelectric nanogenerator prepared from electrospun mats with spongy parenchyma-like structure. Nano Energy 2017, 34, 69–75.

46

Kim, K. N.; Chun, J.; Kim, J. W.; Lee, K. Y.; Park, J. U.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 2015, 9, 6394–6400.

47

Zhu, M. L.; Shi, Q. F.; He, T. Y. Y.; Yi, Z. R.; Ma, Y. M.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952.

48

Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C. Y.; Wang, Z. L. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl. Mater. Interfaces 2021, 13, 11205–11214.

49

Li, R. N.; Wei, X. L.; Xu, J. H.; Chen, J. H.; Li, B.; Wu, Z. Y.; Wang, Z. L. Smart wearable sensors based on triboelectric nanogenerator for personal healthcare monitoring. Micromachines 2021, 12, 352.

50

Heo, D.; Kim, T.; Yong, H.; Yoo, K. T.; Lee, S. Sustainable oscillating triboelectric nanogenerator as omnidirectional self-powered impact sensor. Nano Energy 2018, 50, 1–8.

51

Du, T. L.; Zuo, X. S.; Dong, F. Y.; Li, S. Q.; Mtui, A. E.; Zou, Y. J.; Zhang, P.; Zhao, J. H.; Zhang, Y. W.; Sun, P. T. et al. A self-powered and highly accurate vibration sensor based on bouncing-ball triboelectric nanogenerator for intelligent ship machinery monitoring. Micromachines 2021, 12, 218.

52

Zhang, X. Q.; Yu, M.; Ma, Z. R.; Ouyang, H.; Zou, Y.; Zhang, S. L.; Niu, H. K.; Pan, X. X.; Xu, M. Y.; Li, Z. et al. Self-powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting. Adv. Funct. Mater. 2019, 29, 1900327.

53

Meng, X. S.; Li, H. Y.; Zhu, G.; Wang, Z. L. Fully enclosed bearing-structured self-powered rotation sensor based on electrification at rolling interfaces for multi-tasking motion measurement. Nano Energy 2015, 12, 606–611.

54

Dong, K.; Deng, J. A.; Ding, W. B.; Wang, A. C.; Wang, P. H.; Cheng, C. Y.; Wang, Y. C.; Jin, L. M.; Gu, B. H.; Sun, B. Z. et al. Versatile core−sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 2018, 8, 1801114.

55

Wu, Z. Y.; Zhang, B. B.; Zou, H. Y.; Lin, Z. M.; Liu, G. L.; Wang, Z. L. Multifunctional sensor based on translational-rotary triboelectric nanogenerator. Adv. Energy Mater. 2019, 9, 1901124.

Nano Research
Pages 6483-6489
Cite this article:
Xu J, Wei X, Li R, et al. Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Research, 2022, 15(7): 6483-6489. https://doi.org/10.1007/s12274-022-4218-5
Topics:

1078

Views

13

Crossref

12

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 11 November 2021
Revised: 29 January 2022
Accepted: 08 February 2022
Published: 23 April 2022
© Tsinghua University Press 2022
Return