Graphical Abstract

In the era of big data and the Internet of Things, the digital information of athletes is particularly significant in sports competitions. Here, an intelligent self-powered take-off board sensor (TBS) based on triboelectric nanogenerator (TENG) with a solid-wooden substrate is provided for precise detection of athletes’ take-off status in the sport of triple-jumping, which is sufficient for triple-jumping training judgment with a high accuracy of 1 mm. Meanwhile, a foul alarm system and a distance between the athlete’s foot and take-off line (GAP) measurement system are further developed to provide take-off data for athletes and referees. The induced charges are formed by the TBS during taking-off, and then the real-time exercise data is acquired and processed via the test program. This work presents a self-powered sports sensor for intelligent sports monitoring and promotes the application of TENG-based sensors in intelligent sports.
Hsiao, Y. C.; Wu, M. H.; Li, S. C. Elevated performance of the smart city-A case study of the IoT by innovation mode. IEEE Trans. Eng. Manage. 2021, 68, 1461–1475.
Song, W.; Xu, M. M.; Dolma, Y. C. Design and implementation of beach sports big data analysis system based on computer technology. J. Coastal Res. 2019, 327–331.
Baerg, A. Big data, sport, and the digital divide: Theorizing how athletes might respond to big data monitoring. J. Sport Soc. Iss. 2017, 41, 3–20.
Bai, Z. B.; Bai, X. M. Sports big data: Management, analysis, applications, and challenges. Complexity 2021, 2021, 6676297.
Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.
Sommerville, R.; Shaw-Stewart, J.; Goodship, V.; Rowson, N.; Kendrick, E. A review of physical processes used in the safe recycling of lithium ion batteries. Sustainable Mater. Technol. 2020, 25, e00197.
Ali, H.; Khan, H. A.; Pecht, M. G. Circular economy of Li batteries: Technologies and trends. J. Energy Storage 2021, 40, 102690.
Bai, Y. C.; Muralidharan, N.; Sun, Y. K.; Passerini, S.; Stanley Whittingham, M.; Belharouak, I. Energy and environmental aspects in recycling lithium-ion batteries: Concept of battery identity global passport. Mater. Today 2020, 41, 304–315.
Peng, L.; Hu, L. F.; Fang, X. S. Energy harvesting for nanostructured self-powered photodetectors. Adv. Funct. Mater. 2014, 24, 2591–2610.
Leung, S. F.; Ho, K. T.; Kung, P. K.; Hsiao, V. K. S.; Alshareef, H. N.; Wang, Z. L.; He, J. H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611.
Liu, Q.; Wang, X. X.; Song, W. Z.; Qiu, H. J.; Zhang, J.; Fan, Z. Y.; Yu, M.; Long, Y. Z. Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl. Mater. Interfaces 2020, 12, 8288–8295.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator!. Nano Energy 2012, 1, 328–334.
Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.
Zhu, G.; Peng, B.; Chen, J.; Jing, Q. S.; Wang, Z. L. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 2015, 14, 126–138.
Dagdeviren, C.; Li, Z.; Wang, Z. L. Energy harvesting from the animal/human body for self-powered electronics. Annu. Rev. Biomed. Eng. 2017, 19, 85–108.
Dzhardimalieva, G. I.; Yadav, B. C.; Lifintseva, T. Y. V.; Uflyand, I. E. Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. Eur. Polym. J. 2021, 142, 110163.
Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.
Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.
Wang, J. Y.; Pan, L.; Guo, H. Y.; Zhang, B. B.; Zhang, R. R.; Wu, Z. Y.; Wu, C. S.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv. Energy Mater. 2019, 9, 1802892.
Yao, Y. Y.; Jiang, T.; Zhang, L. M.; Chen, X. Y.; Gao, Z. L.; Wang, Z. L. Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interfaces 2016, 8, 21398–21406.
Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.
Huang, L. B.; Xu, W.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Hao, J. H. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42.
Liu, S. M.; Li, X.; Wang, Y. Q.; Yang, Y. F.; Meng, L. X.; Cheng, T. H.; Wang, Z. L. Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy 2021, 83, 105851.
Wang, Q.; Zou, H. X.; Zhao, L. C.; Li, M.; Wei, K. X.; Huang, L. P.; Zhang, W. M. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Appl. Phys. Lett. 2020, 117, 043902.
Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.
Bian, Y. X.; Jiang, T.; Xiao, T. X.; Gong, W. P.; Cao, X.; Wang, Z. N.; Wang, Z. L. Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel. Adv. Mater. Technol. 2018, 3, 1700317.
Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.
Zhong, W.; Xu, L.; Zhan, F.; Wang, H. M.; Wang, F.; Wang, Z. L. Dripping channel based liquid triboelectric nanogenerators for energy harvesting and sensing. ACS Nano 2020, 14, 10510–10517.
Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.
Gong, W.; Hou, C. Y.; Guo, Y. B.; Zhou, J.; Mu, J. K.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy 2017, 39, 673–683.
Wu, H. Z.; Tatarenko, A.; Bichurin, M. I.; Wang, Y. J. A multiferroic module for biomechanical energy harvesting. Nano Energy 2021, 83, 105777.
Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.
Guo, H. Y.; Yeh, M. H.; Zi, Y. L.; Wen, Z.; Chen, J.; Liu, G. L.; Hu, C. G.; Wang, Z. L. Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 2017, 11, 4475–4482.
Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2021, 4, 147–153.
Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.
Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.
Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.
Pu, X. J.; Tang, Q.; Chen, W. S.; Huang, Z. Y.; Liu, G. L.; Zeng, Q. X.; Chen, J.; Guo, H. Y.; Xin, L. M.; Hu, C. G. Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 2020, 76, 105047.
Qin, K.; Chen, C.; Pu, X. J.; Tang, Q.; He, W. C.; Liu, Y. K.; Zeng, Q. X.; Liu, G. L.; Guo, H. Y.; Hu, C. G. Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 2021, 13, 51.
Huang, P.; Wen, D. L.; Qiu, Y.; Yang, M. H.; Tu, C.; Zhong, H. S.; Zhang, X. S. Textile-based triboelectric nanogenerators for wearable self-powered microsystems. Micromachines 2021, 12, 158.
Li, S. M.; Wang, J.; Peng, W. B.; Lin, L.; Zi, Y. L.; Wang, S. H.; Zhang, G.; Wang, Z. L. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 2017, 7, 1602832.
Pu, X.; Li, L. X.; Liu, M. M.; Jiang, C. Y.; Du, C. H.; Zhao, Z. F.; Hu, W. G.; Wang, Z. L. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 2016, 28, 98–105.
Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. S.; Lee, J. H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S. W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.
Li, Z.; Zheng, Q.; Wang, Z. L.; Li, Z. Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020, 2020, 8710686.
Yu, B.; Yu, H.; Wang, H. Z.; Zhang, Q. H.; Zhu, M. F. High-power triboelectric nanogenerator prepared from electrospun mats with spongy parenchyma-like structure. Nano Energy 2017, 34, 69–75.
Kim, K. N.; Chun, J.; Kim, J. W.; Lee, K. Y.; Park, J. U.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 2015, 9, 6394–6400.
Zhu, M. L.; Shi, Q. F.; He, T. Y. Y.; Yi, Z. R.; Ma, Y. M.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952.
Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C. Y.; Wang, Z. L. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl. Mater. Interfaces 2021, 13, 11205–11214.
Li, R. N.; Wei, X. L.; Xu, J. H.; Chen, J. H.; Li, B.; Wu, Z. Y.; Wang, Z. L. Smart wearable sensors based on triboelectric nanogenerator for personal healthcare monitoring. Micromachines 2021, 12, 352.
Heo, D.; Kim, T.; Yong, H.; Yoo, K. T.; Lee, S. Sustainable oscillating triboelectric nanogenerator as omnidirectional self-powered impact sensor. Nano Energy 2018, 50, 1–8.
Du, T. L.; Zuo, X. S.; Dong, F. Y.; Li, S. Q.; Mtui, A. E.; Zou, Y. J.; Zhang, P.; Zhao, J. H.; Zhang, Y. W.; Sun, P. T. et al. A self-powered and highly accurate vibration sensor based on bouncing-ball triboelectric nanogenerator for intelligent ship machinery monitoring. Micromachines 2021, 12, 218.
Zhang, X. Q.; Yu, M.; Ma, Z. R.; Ouyang, H.; Zou, Y.; Zhang, S. L.; Niu, H. K.; Pan, X. X.; Xu, M. Y.; Li, Z. et al. Self-powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting. Adv. Funct. Mater. 2019, 29, 1900327.
Meng, X. S.; Li, H. Y.; Zhu, G.; Wang, Z. L. Fully enclosed bearing-structured self-powered rotation sensor based on electrification at rolling interfaces for multi-tasking motion measurement. Nano Energy 2015, 12, 606–611.
Dong, K.; Deng, J. A.; Ding, W. B.; Wang, A. C.; Wang, P. H.; Cheng, C. Y.; Wang, Y. C.; Jin, L. M.; Gu, B. H.; Sun, B. Z. et al. Versatile core−sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 2018, 8, 1801114.
Wu, Z. Y.; Zhang, B. B.; Zou, H. Y.; Lin, Z. M.; Liu, G. L.; Wang, Z. L. Multifunctional sensor based on translational-rotary triboelectric nanogenerator. Adv. Energy Mater. 2019, 9, 1901124.