AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages

Lu ShenZhen LiangZhiyu ChenCan WuXuefeng HuJieyu Zhang( )Qing Jiang( )Yunbing Wang
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
Show Author Information

Graphical Abstract

Controlled etching of Prussian blue analogue nanocubes is conducted, followed by the in-situ formation of Au nanoparticles in the etched nanocavities. Due to the unique structure of the Au-inlaid nanocages, the non-enzymatic glucose sensors have excellent sensing performance and can be used 150 times with a low level of sensitivity loss.

Abstract

Mass detection of glucose, which is required in many applications, remains challenging. The commercial enzyme-based glucose test strips cannot be reused, and current non-enzymatic glucose sensors exhibit a narrow range of detection and slow glucose oxidation kinetics. Herein, controlled etching of Prussian blue analogue (PBA) nanocubes at the vertices is conducted and Au nanoparticles (Au NPs) are subsequently inlaid in the etched cavities by in-situ reduction of HAuCl4. The unique AuNP-PBA nanocomplexes exhibit low electrochemical potential for glucose oxidation, high electrocatalytic activity, and rapid redox electron transfer rate. Covalent immobilization of the Au-inlaid nanomaterials on a fine Au wire leads to a non-enzymatic glucose sensor with a particularly wide linear detection range (10 μM to 16 mM), excellent anti-interference, and fast response. More importantly, the sensor is reusable, and its sensitivity is well maintained even after 150 times of detection. This new-concept material promises to enable high-throughput glucose detection at a low cost, which is essential in diabetic management and other healthcare applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4219_MOESM1_ESM.pdf (1.1 MB)

References

1

Pappa, A. M.; Parlak, O.; Scheiblin, G.; Mailley, P.; Salleo, A.; Owens, R. M. Organic electronics for point-of-care metabolite monitoring. Trends Biotechnol. 2018, 36, 45–59.

2

Agarwal, S.; Cappola, A. R. Continuous glucose monitoring in adolescent, young adult, and older patients with type 1 diabetes. JAMA 2020, 323, 2384–2385.

3

Sun, K.; Yang, Y. K.; Zhou, H.; Yin, S. Y.; Qin, W. P.; Yu, J. B.; Chiu, D. T.; Yuan, Z.; Zhang, X. J.; Wu, C. F. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone. ACS Nano 2018, 12, 5176–5184.

4

Hood, K. K.; DiMeglio, L. A.; Riddle, M. C. Putting continuous glucose monitoring to work for people with type 1 diabetes. Diabetes Care 2020, 43, 19–21.

5

Lipani, L.; Dupont, B. G. R.; Doungmene, F.; Marken, F.; Tyrrell, R. M.; Guy, R. H.; Ilie, A. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 2018, 13, 504–511.

6

Xie, X.; Doloff, J. C.; Yesilyurt, V.; Sadraei, A.; McGarrigle, J. J.; Omami, M.; Veiseh, O.; Farah, S.; Isa, D.; Ghani, S. et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2018, 2, 894–906.

7

Sode, K.; Loew, N.; Ohnishi, Y.; Tsuruta, H.; Mori, K.; Kojima, K.; Tsugawa, W.; LaBelle, J. T.; Klonoff, D. C. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips. Biosens. Bioelectron. 2017, 87, 305–311.

8

Soni, A.; Jha, S. K. A paper strip based non-invasive glucose biosensor for salivary analysis. Biosens. Bioelectron. 2015, 67, 763–768.

9

Klatman, E. L.; Jenkins, A. J.; Ahmedani, M. Y.; Ogle, G. D. Blood glucose meters and test strips: Global market and challenges to access in low-resource settings. Lancet Diabetes Endocrinol. 2019, 7, 150–160.

10

Wang, Y.; Shi, L.; Zhu, J. R.; Li, B. X.; Jin, Y. Visual and sensitive detection of telomerase activity via hydrogen peroxide test strip. Biosens. Bioelectron. 2020, 156, 112132.

11

Liu, Y.; Tu, D. T.; Zheng, W.; Lu, L. Y.; You, W. W.; Zhou, S. Y.; Huang, P.; Li, R. F.; Chen, X. Y. A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res. 2018, 11, 3164–3174.

12

Ohayon, D.; Nikiforidis, G.; Savva, A.; Giugni, A.; Wustoni, S.; Palanisamy, T.; Chen, X. X.; Maria, I. P.; Di Fabrizio, E.; Costa, P. M. F. J. et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 2020, 19, 456–463.

13

Van Enter, B. J.; Von Hauff, E. Challenges and perspectives in continuous glucose monitoring. Chem. Commun. 2018, 54, 5032–5045.

14

Hong, Y. J.; Lee, H.; Kim, J.; Lee, M.; Choi, H. J.; Hyeon, T.; Kim, D. H. Blood sugar monitoring: Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv. Funct. Mater. 2018, 28, 1870336.

15

Cinti, S.; Marrone, R.; Mazzaracchio, V.; Moscone, D.; Arduini, F. Novel bio-lab-on-a-tip for electrochemical glucose sensing in commercial beverages. Biosens. Bioelectron. 2020, 165, 112334.

16

Morshed, J.; Nakagawa, R.; Hossain, M. M.; Nishina, Y.; Tsujimura, S. Disposable electrochemical glucose sensor based on water-soluble quinone-based mediators with flavin adenine dinucleotide-dependent glucose dehydrogenase. Biosens. Bioelectron. 2021, 189, 113357.

17

Zhang, H. J.; Liang, X.; Han, L.; Li, F. “ Non-naked” gold with glucose oxidase-like activity: A nanozyme for tandem catalysis. Small 2018, 14, 1803256.

18

Chao, D. Y.; Chen, J. X.; Dong, Q.; Wu, W. W.; Qi, D. S.; Dong, S. J. Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials. Nano Res. 2020, 13, 3012–3018.

19

Chen, Y. R.; Armstrong, Z.; Artola, M.; Florea, B. I.; Kuo, C. L.; De Boer, C.; Rasmussen, M. S.; Hachem, M. A.; Van Der Marel, G. A.; Codée, J. D. C. et al. Activity-based protein profiling of retaining α-amylases in complex biological samples. J. Am. Chem. Soc. 2021, 143, 2423–2432.

20

Gomes, T.; Juurlink, D. N.; Shah, B. R.; Paterson, J. M.; Mamdani, M. M. Blood glucose test strips: Options to reduce usage. CMAJ 2010, 182, 35–38.

21

Wei, M.; Qiao, Y. X.; Zhao, H. T.; Liang, J.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Lu, W. B.; Sun, X. P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569.

22

Adeel, M.; Asif, K.; Rahman, M.; Daniele, S.; Canzonieri, V.; Rizzolio, F. Glucose detection devices and methods based on metal–organic frameworks and related materials. Adv. Funct. Mater. 2021, 31, 2106023.

23

Liu, X. T.; Zhang, W. L.; Lin, Z. F.; Meng, Z. H.; Shi, C. Y.; Xu, Z. J.; Yang, L. K.; Liu, X. Y. Coupling of silk fibroin nanofibrils enzymatic membrane with ultra-thin PtNPs/graphene film to acquire long and stable on-skin sweat glucose and lactate sensing. Small Methods 2021, 5, 2000926.

24

Qin, L. R.; He, L. Z.; Zhao, J. W.; Zhao, B. L.; Yin, Y. Y.; Yang, Y. Synthesis of Ni/Au multilayer nanowire arrays for ultrasensitive non-enzymatic sensing of glucose. Sens. Actuators B Chem. 2017, 240, 779–784.

25

Wang, C. H.; Yang, C. H.; Chang, J. K. High-selectivity electrochemical non-enzymatic sensors based on graphene/Pd nanocomposites functionalized with designated ionic liquids. Biosens. Bioelectron. 2017, 89, 483–488.

26

Ma, J. W.; Chen, Y. G.; Chen, L.; Wang, L. Y. Ternary Pd–Ni–P nanoparticle-based nonenzymatic glucose sensor with greatly enhanced sensitivity achieved through active-site engineering. Nano Res. 2017, 10, 2712–2720.

27

Zhang, B. Y.; Zavabeti, A.; Chrimes, A. F.; Haque, F.; O’Dell, L. A.; Khan, H.; Syed, N.; Datta, R.; Wang, Y. C.; Chesman, A. S. R. et al. Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing. Adv. Funct. Mater. 2018, 28, 1706006.

28

Zhao, Z.; Kong, Y.; Lin, X. Y.; Liu, C.; Liu, J. R.; He, Y. Y.; Yang, L. L.; Huang, G. S.; Mei, Y. F. Oxide nanomembrane induced assembly of a functional smart fiber composite with nanoporosity for an ultra-sensitive flexible glucose sensor. J. Mater. Chem. A 2020, 8, 26119–26129.

29

Yang, J. W.; Liang, X. Y.; Cui, L.; Liu, H. Y.; Xie, J. B.; Liu, W. X. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects. Biosens. Bioelectron. 2016, 80, 171–174.

30

Cui, X. J.; Zhao, T. C.; Yang, S.; Xie, G.; Zhang, Z. Y.; Zhang, Y. X.; Sang, S. B.; Lin, Z. H.; Zhang, W. D.; Zhang, H. L. A spongy electrode-brush-structured dual-mode triboelectric nanogenerator for harvesting mechanical energy and self-powered trajectory tracking. Nano Energy 2020, 78, 105381.

31

Mohamed, M. A.; Yehia, A. M.; Banks, C. E.; Allam, N. K. Novel MWCNTs/graphene oxide/pyrogallol composite with enhanced sensitivity for biosensing applications. Biosens. Bioelectron. 2017, 89, 1034–1041.

32

Chatard, C.; Sabac, A.; Moreno-Velasquez, L.; Meiller, A.; Marinesco, S. Minimally invasive microelectrode biosensors based on platinized carbon fibers for in vivo brain monitoring. ACS Cent. Sci. 2018, 4, 1751–1760.

33

Chen, A. R.; Ding, Y.; Yang, Z. M.; Yang, S. C. Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor. Biosens. Bioelectron. 2015, 74, 967–973.

34

Mahmood, N.; Tang, T. Y.; Hou, Y. L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective. Adv. Energy Mater. 2016, 6, 1600374.

35

Koo, W. T.; Jang, J. S.; Kim, I. D. Metal–organic frameworks for chemiresistive sensors. Chem 2019, 5, 1938–1963.

36

Holade, Y.; Hickey, D. P.; Minteer, S. D. Halide-regulated growth of electrocatalytic metal nanoparticles directly onto a carbon paper electrode. J. Mater. Chem. A 2016, 4, 17154–17162.

37

Shi, J. D.; Wang, L.; Dai, Z. H.; Zhao, L. Y.; Du, M. D.; Li, H. B.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14, 1800819.

38

Wang, L. F.; Zhu, W. Q.; Lu, W. B.; Qin, X. F.; Xu, X. H. Surface plasmon aided high sensitive non-enzymatic glucose sensor using Au/NiAu multilayered nanowire arrays. Biosens. Bioelectron. 2018, 111, 41–46.

39

Zhang, L.; Ye, C.; Li, X.; Ding, Y. R.; Liang, H. B.; Zhao, G. Y.; Wang, Y. A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro Lett. 2017, 10, 28.

40

Hang, L. F.; Zhou, F.; Men, D. D.; Li, H. L.; Li, X. Y.; Zhang, H. H.; Liu, G. Q.; Cai, W. P.; Li, C. C.; Li, Y. Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks. Nano Res. 2017, 10, 2257–2270.

41

Chen, J. J.; Gao, H. J.; Li, Z. H.; Li, Y. X.; Yuan, Q. Ferriporphyrin-inspired MOFs as an artificial metalloenzyme for highly sensitive detection of H2O2 and glucose. Chin. Chem. Lett. 2020, 31, 1398–1401.

42

Wang, B. F.; Luo, Y. Y.; Gao, L.; Liu, B.; Duan, G. T. High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal–organic frameworks. Biosens. Bioelectron. 2021, 171, 112736.

43

Vilian, A. T. E.; Dinesh, B.; Rethinasabapathy, M.; Hwang, S. K.; Jin, C. S.; Huh, Y. S.; Han, Y. K. Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A 2018, 6, 14367–14379.

44

Shahrokhian, S.; Khaki Sanati, E.; Hosseini, H. Direct growth of metal–organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Biosens. Bioelectron. 2018, 112, 100–107.

45

Cheng, X. Q.; Zhou, J. H.; Chen, J. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection. Nano Res. 2019, 12, 3031–3036.

46

Zhu, J.; Liu, S. B.; Hu, Z. H.; Zhang, X. Z.; Yi, N.; Tang, K. R.; Dexheimer, M. G.; Lian, X. J.; Wang, Q.; Yang, J. et al. Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens. Bioelectron. 2021, 193, 113606.

47

Lu, Z. W.; Wu, L.; Dai, X. X.; Wang, Y. Y.; Sun, M. M.; Zhou, C. L.; Du, H. J.; Rao, H. B. Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: Highly sensitive electrochemical determination of hydrogen peroxide and glucose. J. Hazard. Mater. 2021, 402, 123774.

48

Wang, W. C.; Li, X.; He, T. O.; Liu, Y. M.; Jin, M. S. Engineering surface structure of Pt nanoshells on Pd nanocubes to preferentially expose active surfaces for ORR by manipulating the growth kinetics. Nano Lett. 2019, 19, 1743–1748.

49

Wang, L. F.; Zhu, W. Q.; Lu, W. B.; Shi, L. N.; Wang, R. X.; Pang, R. X.; Cao, Y. Y.; Wang, F.; Xu, X. H. One-step electrodeposition of AuNi nanodendrite arrays as photoelectrochemical biosensors for glucose and hydrogen peroxide detection. Biosens. Bioelectron. 2019, 142, 111577.

50

Nugraha, A. S.; Malgras, V.; Kim, J.; Bo, J.; Li, C. L.; Iqbal, M.; Yamauchi, Y.; Asahi, T. Trimetallic mesoporous AuCuNi electrocatalysts with controlled compositions using block copolymer micelles as templates. Small Methods 2018, 2, 1800283.

51

Huang, Y. H.; Yang, S. P.; Lee, P. T.; Kuo, T. T.; Ho, C. E. Significant improvement of the thermal stability and electrochemical corrosion resistance of the Au/Pd surface finish through catalytic modification. Corros. Sci. 2019, 146, 112–120.

52

Li, F. M.; Kang, Y. Q.; Liu, H. M.; Zhai, Y. N.; Hu, M. C.; Chen, Y. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction. J. Colloid Interface Sci. 2018, 514, 299–305.

53

Nai, J. W.; Lu, Y.; Yu, L.; Wang, X.; Lou, X. W. Formation of Ni–Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv. Mater. 2017, 29, 1703870.

54

Han, L.; Yu, X. Y.; Lou, X. W. Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 2016, 28, 4601–4605.

55

Jiang, D. F.; Pang, J.; You, Q. N.; Liu, T.; Chu, Z. Y.; Jin, W. Q. Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite. Biosens. Bioelectron. 2019, 124–125, 260–267.

56

Ye, J. H.; Zhuang, G. X.; Wen, Y. L.; Wei, J. X.; Chen, J. H.; Zhuang, Z. Y.; Yu, Y. Three-dimensional zigzag Prussian blue analogue and its derivates for bisphenol a scavenging: Inhomogeneous spatial distribution of FeIII in anisotropic etching of PBA. Chem. Eng. J. 2019, 372, 260–268.

Nano Research
Pages 6490-6499
Cite this article:
Shen L, Liang Z, Chen Z, et al. Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages. Nano Research, 2022, 15(7): 6490-6499. https://doi.org/10.1007/s12274-022-4219-4
Topics:

1068

Views

45

Crossref

42

Web of Science

44

Scopus

2

CSCD

Altmetrics

Received: 25 November 2021
Revised: 14 January 2022
Accepted: 08 February 2022
Published: 18 April 2022
© Tsinghua University Press 2022
Return