Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Clathrin-mediated endocytosis plays a critical role for hydroxyapatite nanoparticles (HANPs) to enter tumor cells, induce mitochondrial apoptosis, and inhibit tumor growth. This study was aimed to investigate how the morphology of HANPs impacts the endocytosis of the particles in melanoma cells, and their anti-tumor effect by using in vitro cell experiments and in vivo tumor animal model. Three shapes of HANPs, including granular HANPs (G-HANPs), rod-like HANPs (R-HANPs), and needle-like HANPs (N-HANPs), were successfully prepared by wet chemical method. All the three HANPs could be internalized into A375 melanoma cells as indicated by cellular transmission electron microscopy images. Among these HANPs, only G-HANPs induced morphological change of mitochondria and loss of mitochondrial membrane potential (Δψm), and exhibited the greatest intracellular internalization efficiency in the tumor cells. Furthermore, the results of immunofluorescence staining and western blotting indicated that the level of adaptin-2 (AP2) protein was up-regulated by all the HANPs, and highest in G-HANPs treated A375 cells. Moreover, in the tumor-bearing mouse model, we found that tumor growth was delayed by all the three HANPs, of which, G-HANPs delayed tumor growth most efficiently and presented a highest expression level of AP2 protein in tumor tissues. Therefore, this study suggested that the morphology of HANPs regulated their endocytosis efficiency and their effect to inhibit tumor growth. This work facilitates to direct the rational design of nano-materials for tumor therapy.
Tang, Z. R.; Li, X. F.; Tan, Y. F.; Fan, H. S.; Zhang, X. D. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen. Biomater. 2017, 5, 43–59.
Hong, Y. L.; Fan, H. S.; Li, B.; Guo, B.; Liu, M.; Zhang, X. D. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater. Sci. Eng. R Rep. 2010, 70, 225–242.
Ribeiro, N.; Sousa, S. R.; Van Blitterswijk, C. A.; Moroni, L.; Monteiro, F. J. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Biofabrication 2014, 6, 035015.
Li, Z. T.; Tang, J. Q.; Wu, H. F.; Ling, Z. X.; Chen, S. Y.; Zhou, Y.; Guo, B.; Yang, X.; Zhu, X. D.; Wang, L. et al. A systematic assessment of hydroxyapatite nanoparticles used in the treatment of melanoma. Nano Res. 2020, 13, 2106–2117.
Zhang, K.; Zhou, Y.; Xiao, C.; Zhao, W. L.; Wu, H. F.; Tang, J. Q.; Li, Z. T.; Yu, S.; Li, X. F.; Min, L. et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Sci. Adv. 2019, 5, eaax6946.
Zhao, H.; Wu, C. H.; Gao, D.; Chen, S. P.; Zhu, Y. D.; Sun, J.; Luo, H. R.; Yu, K.; Fan, H. S.; Zhang, X. D. Antitumor effect by hydroxyapatite nanospheres: Activation of mitochondria-dependent apoptosis and negative regulation of phosphatidylinositol-3-kinase/protein kinase B pathway. ACS Nano 2018, 12, 7838–7854.
Wu, H. F.; Li, Z. T.; Tang, J. Q.; Yang, X.; Zhou, Y.; Guo, B.; Wang, L.; Zhu, X. D.; Tu, C. Q.; Zhang, X. D. The in vitro and in vivo anti-melanoma effects of hydroxyapatite nanoparticles: Influences of material factors. Int. J. Nanomedicine 2019, 14, 1177–1191.
Aoki, H.; Ohgaki, M.; Kano, S. Effects of adriacin-absorbing hydroxyapatite-sol on Ca-9 cell growth. Rep. Inst. Med. Dent. Eng. 1993, 27, 39–44.
Chu, S. H.; Feng, D. F.; Ma, Y. B.; Li, Z. Q. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int. J. Nanomedicine 2012, 7, 3659–3666.
Cui, X. H.; Liang, T.; Liu, C. S.; Yuan, Y.; Qian, J. C. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells. Mater. Sci. Eng. C 2016, 67, 453–460.
Wang, Y. F.; Wang, J. L.; Hang, H.; Cai, M. L.; Wang, S. Y.; Ma, J.; Li, Y.; Mao, C. B.; Zhang, S. M. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. Acs Nano 2016, 10, 9927–9937.
Li, X.; Wang, Y. F.; Chen, Y.; Zhou, P.; Wei, K.; Wang, H.; Wang, J. L.; Fang, H.; Zhang, S. M. Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ros-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials 2020, 257, 120253.
Kirchhausen, T.; Owen, D.; Harrison, S. C. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 2014, 6, a016725.
Kovtun, O.; Dickson, V. K.; Kelly, B. T.; Owen, D. J.; Briggs, J. A. G. Architecture of the AP2: Clathrin coat on the membranes of clathrin-coated vesicles. Sci. Adv. 2020, 6, eaba8381.
Mettlen, M.; Chen, P. H.; Srinivasan, S.; Danuser, G.; Schmid, S. L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 2018, 87, 871–896.
Reis, C. R.; Chen, P. H.; Bendris, N.; Schmid, S. L. TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation. Proc. Natl. Acad. Sei. USA 2017, 114, 504–509.
Mcmahon, H. T.; Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2011, 12, 517–533.
Wood, L. A.; Larocque, G.; Clarke, N. I.; Sarkar, S.; Royle, S. J. New tools for "hot-wiring" clathrin-mediated endocytosis with temporal and spatial precision. J. Cell Biol. 2017, 216, 4351–4365.
Hayashi, H.; Inamura, K.; Aida, K.; Naoi, S.; Horikawa, R.; Nagasaka, H.; Takatani, T.; Fukushima, T.; Hattori, A.; Yabuki, T. et al. Ap2 adaptor complex mediates bile salt export pump internalization and modulates its hepatocanalicular expression and transport function. Hepatology 2012, 55, 1889–1900.
Robinson, M. S. Forty years of clathrin-coated vesicles. Traffic 2015, 16, 1210–1238.
Pearse, B. M.; Robinson, M. S. Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin. EMBO J. 1984, 3, 1951–1957.
Schmid, E. M.; Ford, M. G. J.; Burtey, A.; Praefcke, G. J. K.; Peak-Chew, S. Y.; Mills, I. G.; Benmerah, A.; Mcmahon, H. T. Role of the ap2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol. 2006, 4, e262.
Wang, X. X.; Chao, Y. Z.; Wang, Y.; Xu, B. H.; Wang, C.; Li, H. Identification of an adaptor protein-2 mu gene (AccAp2m) in Apis cerana cerana and its role in oxidative stress responses. J. Cell. Biochem. 2019, 120, 16600–16613.
Zhu, C.; Zhou, X. J.; Liu, Z. T.; Chen, H. W.; Wu, H. F.; Yang, X.; Zhu, X. D.; Ma, J.; Dong, H. The morphology of hydroxyapatite nanoparticles regulates cargo recognition in clathrin-mediated endocytosis. Front. Mol. Biosci. 2021, 8, 627015.
Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; Desimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618.
Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.
Tomayko, M. M.; Reynolds, C. P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 1989, 24, 148–154.
Medina, P. P.; Nolde, M.; Slack, F. J. Oncomir addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010, 467, 86–90.
Zhang, M. J.; Liu, S. N.; Xu, G.; Guo, Y. N.; Zhang, D. C. Cytotoxicity and apoptosis induced by nanobacteria in human breast cancer cells. Int. J. Nanomedicine 2014, 9, 265–271.
Emanuele, S.; Lauricella, M.; Carlisi, D.; Vassallo, B.; D’Anneo, A.; Di Fazio, P.; Vento, R.; Tesoriere, G. Saha induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor bortezomib. Apoptosis 2007, 12, 1327–1338.
Tang, W.; Yuan, Y.; Liu, C. S.; Wu, Y. Q.; Qian, J. C. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine 2013, 9, 397–412.
Han, Y. C.; Li, S. P.; Cao, X. Y.; Yuan, L.; Wang, Y. F.; Yin, Y. X.; Qiu, T.; Dai, H. L.; Wang, X. Y. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci. Rep 2014, 4, 7134.
Humeau, J.; Pedro, J. M. B. S.; Vitale, I.; Nuñez, L.; Villalobos, C.; Kroemer, G.; Senovilla, L. Calcium signaling and cell cycle: Progression or death. Cell Calcium 2018, 70, 3–15.
An, J. Y.; Zhang, K. X.; Wang, B. H.; Wu, S. X.; Wang, Y. F.; Zhang, H. L.; Zhang, Z. Z.; Liu, J. J.; Shi, J. J. Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano 2020, 14, 7639–7650.
Bong, A. H. L.; Monteith, G. R. Calcium signaling and the therapeutic targeting of cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 1786–1794.
Cao, R.; Sun, W.; Zhang, Z.; Li, X. J.; Du, J. J.; Fan, J. L.; Peng, X. J. Protein nanoparticles containing Cu(II) and DOX for efficient chemodynamic therapy via self-generation of H2O2. Chin. Chem. Lett. 2020, 31, 3127–3130.
Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.
Dong, S.; Chen, Y.; Yu, L.; Lin, K.; Wang, X. Magnetic hyperthermia-synergistic H2O2 self-sufficient catalytic suppression of osteosarcoma with enhanced bone-regeneration bioactivity by 3D-printing composite scaffolds. Adv. Funct. Mater. 2020, 30, 1907071.
He, F. L.; Yu, J.; Yang, J.; Wang, S. Y.; Zhuang, A.; Shi, H. H.; Gu, X.; Xu, X. F.; Chai, P. W.; Jia, R. B. m6A RNA hypermethylation-induced BACE2 boosts intracellular calcium release and accelerates tumorigenesis of ocular melanoma. Mol. Ther. 2021, 29, 2121–2133.
Kumari, A.; Yadav, S. K. Cellular interactions of therapeutically delivered nanoparticles. Expert Opin. Drug Deliv. 2011, 8, 141–151.
Zhang, S. L.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 2010, 21, 419–424.
Aoyama, Y.; Kanamori, T.; Nakai, T.; Sasaki, T.; Horiuchi, S.; Sando, S.; Niidome, T. Artificial viruses and their application to gene delivery. size-controlled gene coating with glycocluster nanoparticles. J. Am. Chem. Soc. 2003, 125, 3455–3457.
Gao, H. J.; Shi, W. D.; Freund, L. B. Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 2005, 102, 9469–9474.
Shi, Z. L.; Huang, X.; Cai, Y. R.; Tang, R. K.; Yang, D. S. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 2009, 5, 338–345.
Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.
Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.
Qiu, Y.; Liu, Y.; Wang, L. M.; Xu, L. G.; Bai, R.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Li, Y. F.; Chen, C. Y. Surface chemistry and aspect ratio mediated cellular uptake of au nanorods. Biomaterials 2010, 31, 7606–7619.
Gulbranson, D. R.; Crisman, L.; Lee, M. S.; Ouyang, Y.; Menasche, B. L.; Demmitt, B. A.; Wan, C.; Nomura, T.; Ye, Y. H.; Yu, H. J. et al. AAGAB controls AP2 adaptor assembly in clathrin-mediated endocytosis. Dev. Cell 2019, 50, 436–446, e5.
Partlow, E. A.; Baker, R. W.; Beacham, G. M.; Chappie, J. S.; Leschziner, A. E.; Hollopeter, G. A structural mechanism for phosphorylation-dependent inactivation of the AP2 complex. eLife 2019, 8, e50003.