AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Metal cation substitution of halide perovskite nanocrystals

Yujun Xie1,§Anqi Zhou1,§Xiaoshan Zhang2Qiongrong Ou1Shuyu Zhang1( )
Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China

§ Yujun Xie and Anqi Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

This review summarizes the synthesis and growth, B-site composition engineering and light emission applications of halide perovskite nanocrystals, and analyzes variations in the resulting optical properties theoretically and experimentally, which cover the processes of crystalline structure, electronic band structure, defect states, exciton binding energy and exciton photodynamic. Focusing on the commonalities and differences of the functionalities that are induced by various doped ions, we are able to establish an instructive framework to predict and regulate the properties of perovskite nanocrystals, e.g., lower material toxicity, tune optical bandgaps and emissions, repair crystalline defects, improve stability, regulate recombination rates and optimize photoluminescence quantum yields.

Abstract

Recent years have seen a rapid development of lead halide perovskite (LHP) nanocrystals (NCs) as new and promising functional nanomaterials, which exhibit strong potential in a wide range of optoelectronic applications due to their superior properties and solution-processable advantages. However, to promote their progress in commercialization, overcoming the drawbacks of intrinsic lead toxicity and optimizing material performance are important and must be solved using alternative metal ions to replace Pb ions. In this review, we primarily summarize the recent development of lead-substitution strategies, which focus on the commonalities and differences of their functionalities that are induced by various doped ions. After a brief introduction to the synthesis, nucleation and growth of all-inorganic LHP NCs, a deep discussion of the crystalline structure, electronic band structure, defect states, exciton binding energy, exciton photodynamic process and stability is followed. Specifically, we highlight the importance of both theoretical calculations and experimental characterizations to establish indicative guidelines for high-performance semiconductor nanomaterials. Finally, the light emission applications are discussed, and several issues concerning future research on the controllable synthesis of halide perovskite NCs with low toxicity, superior reproducibility and properties are outlined.

References

1

Zhao, Q.; Hazarika, A.; Chen, X. H.; Harvey, S. P.; Larson, B. W.; Teeter, G. R.; Liu, J.; Song, T.; Xiao, C. X.; Shaw, L. et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 2019, 10, 2842.

2

Zhou, D. L.; Liu, D. L.; Pan, G. C.; Chen, X.; Li, D. Y.; Xu, W.; Bai, X.; Song, H. W. Cerium and ytterbium codoped halide perovskite quantum dots: A novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater. 2017, 29, 1704149.

3

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

4

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

5

Sun, H. Z.; Yang, Z. Y.; Wei, M. Y.; Sun, W.; Li, X. Y.; Ye, S. Y.; Zhao, Y. B.; Tan, H. R.; Kynaston, E. L.; Schon, T. B. et al. Chemically addressable perovskite nanocrystals for light-emitting applications. Adv. Mater. 2017, 29, 1701153.

6

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

7

Li, X. M.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

8

Hu, F. R.; Zhang, H. C.; Sun, C.; Yin, C. Y.; Lv, B. H.; Zhang, C. F.; Yu, W. W.; Wang, X. Y.; Zhang, Y.; Xiao, M. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 2015, 9, 12410–12416.

9

Utzat, H.; Sun, W. W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, 1068–1072.

10

Choi, J.; Han, J. S.; Hong, K.; Kim, S. Y.; Jang, H. W. Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 2018, 30, 1704002.

11

Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.

12

Mićić, O. I.; Smith, B. B.; Nozik, A. J. Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory. J. Phys. Chem. B 2000, 104, 12149–12156.

13

Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

14

Kang, J.; Wang, L. W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489–493.

15

Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 2016, 16, 5866–5874.

16
Restriction of the use of certain hazardous substances (RoHS). Directive 2011/65/EU, 2011.
17

Adhikari, G. C.; Thapa, S.; Zhu, H. Y.; Zhu, P. F. Mg 2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method. Adv. Opt. Mater. 2019, 7, 1900916.

18

Zhang, H. B.; Shang, M. H.; Zheng, X. Y.; Zeng, Z. B.; Chen, R. J.; Zhang, Y.; Zhang, J.; Zhu, Y. J. Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells. Electrochim. Acta 2017, 254, 165–171.

19

Shai, X. X.; Zuo, L. J.; Sun, P. Y.; Liao, P. Z.; Huang, W. C.; Yao, E. P.; Li, H.; Liu, S. S.; Shen, Y.; Yang, Y. et al. Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy 2017, 36, 213–222.

20

Bi, C. H.; Wang, S. X.; Li, Q.; Kershaw, S. V.; Tian, J. J.; Rogach, A. L. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 2019, 10, 943–952.

21

Zhou, S.; Ma, Y. P.; Zhou, G. D.; Xu, X.; Qin, M. C.; Li, Y. H.; Hsu, Y. J.; Hu, H. L.; Li, G.; Zhao, N. et al. Ag-doped halide perovskite nanocrystals for tunable band structure and efficient charge transport. ACS Energy Lett. 2019, 4, 534–541.

22

Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.

23

Shen, X. Y.; Zhang, Y.; Kershaw, S. V.; Li, T. S.; Wang, C. C.; Zhang, X. Y.; Wang, W. Y.; Li, D. G.; Wang, Y. H.; Lu, M. et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 2019, 19, 1552–1559.

24

van der Stam, W.; Geuchies, J. J.; Altantzis, T.; van den Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D. de Mello Donega, C. Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097.

25

Begum, R.; Parida, M. R.; Abdelhady, A. L.; Murali, B.; Alyami, N. M.; Ahmed, G. H.; Hedhili, M. N.; Bakr, O. M.; Mohammed, O. F. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 2017, 139, 731–737.

26

Yao, J. S.; Ge, J.; Han, B. N.; Wang, K. H.; Yao, H. B.; Yu, H. L.; Li, J. H.; Zhu, B. S.; Song, J. Z.; Chen, C. et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 3626–3634.

27

Cheng, Y. Z.; Shen, C. Y.; Shen, L. L.; Xiang, W. D.; Liang, X. J. Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs. ACS Appl. Mater. Interfaces 2018, 10, 21434–21444.

28

Ma, J. P.; Chen, Y. M.; Zhang, L. M.; Guo, S. Q.; Liu, J. D.; Li, H.; Ye, B. J.; Li, Z. Y.; Zhou, Y.; Zhang, B. B. et al. Insights into the local structure of dopants, doping efficiency, and luminescence properties of lanthanide-doped CsPbCl3 perovskite nanocrystals. J. Mater. Chem. C 2019, 7, 3037–3048.

29

Ma, J. P.; Chen, J. K.; Yin, J.; Zhang, B. B.; Zhao, Q.; Kuroiwa, Y.; Moriyoshi, C.; Hu, L. L.; Bakr, O. M.; Mohammed, O. F. et al. Doping induces structural phase transitions in all-inorganic lead halide perovskite nanocrystals. ACS Materials Lett. 2020, 2, 367–375.

30

Zhou, D. L.; Sun, R.; Xu, W.; Ding, N.; Li, D. Y.; Chen, X.; Pan, G. C.; Bai, X.; Song, H. W. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications. Nano Lett. 2019, 19, 6904–6913.

31

Yin, J.; Ahmed, G. H.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite. ACS Energy Lett. 2019, 4, 789–795.

32

Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.

33

Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X. K.; Khan, J.; Tang, J.; Song, H. S. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294–9302.

34

Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.

35

Wang, Y. Y.; Tu, J.; Li, T. H.; Tao, C.; Deng, X. Y.; Li, Z. Convenient preparation of CsSnI3 quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far. J. Mater. Chem. A 2019, 7, 7683–7690.

36

Wu, X. T.; Song, W. D.; Li, Q.; Zhao, X. X.; He, D. S.; Quan, Z. W. Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam-induced transformations. Chem.—Asian J. 2018, 13, 1654–1659.

37

Alam, F.; Wegner, K. D.; Pouget, S.; Amidani, L.; Kvashnina, K.; Aldakov, D.; Reiss, P. Eu2+: A suitable substituent for Pb2+ in CsPbX3 perovskite nanocrystals? J. Chem. Phys. 2019, 151, 231101.

38

Moon, B. J.; Kim, S. J.; Lee, S.; Lee, A.; Lee, H.; Lee, D. S.; Kim, T. W.; Lee, S. K.; Bae, S.; Lee, S. H. Rare-earth-element-ytterbium-substituted lead-free inorganic perovskite nanocrystals for optoelectronic applications. Adv. Mater. 2019, 31, 1901716.

39

Almutlaq, J.; Mir, W. J.; Gutiérrez-Arzaluz, L.; Yin, J.; Vasylevskyi, S.; Maity, P.; Liu, J. K.; Naphade, R.; Mohammed, O. F.; Bakr, O. M. CsMnBr3: Lead-free nanocrystals with high photoluminescence quantum yield and picosecond radiative lifetime. ACS Materials Lett. 2021, 3, 290–297.

40

Huang, J. M.; Lei, T.; Siron, M.; Zhang, Y.; Yu, S.; Seeler, F.; Dehestani, A.; Quan, L. N.; Schierle-Arndt, K.; Yang, P. D. Lead-free cesium europium halide perovskite nanocrystals. Nano Lett. 2020, 20, 3734–3739.

41

Yang, B.; Chen, J. S.; Yang, S. Q.; Hong, F.; Sun, L.; Han, P. G.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem. 2018, 130, 5457–5461.

42

Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.

43

Luo, J. J.; Wang, X. M.; Li, S. R.; Liu, J.; Guo, Y. M.; Niu, G. D.; Yao, L.; Fu, Y. H.; Gao, L.; Dong, Q. S. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545.

44

Cong, M. Y.; Yang, B.; Hong, F.; Zheng, T. C.; Sang, Y. B.; Guo, J. W.; Yang, S. Q.; Han, K. L. Self-trapped exciton engineering for white-light emission in colloidal lead-free double perovskite nanocrystals. Sci. Bull. 2020, 65, 1078–1084.

45

Luo, B. B.; Li, F.; Xu, K.; Guo, Y.; Liu, Y.; Xia, Z. G.; Zhang, J. Z. B-Site doped lead halide perovskites: Synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 2019, 7, 2781–2808.

46

Lin, W. X.; Hu, X. W.; Mo, L. Y.; Jiang, X. F.; Xing, X. B.; Shui, L. L.; Priya, S.; Wang, K.; Zhou, G. F. Progresses on novel B-site perovskite nanocrystals. Adv. Opt. Mater. 2021, 9, 2100261.

47

Zhang, X. Y.; Li, L. N.; Sun, Z. H.; Luo, J. H. Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 2019, 48, 517–539.

48

Lu, C. H.; Biesold-McGee, G. V.; Liu, Y. J.; Kang, Z. T.; Lin, Z. Q. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 2020, 49, 4953–5007.

49

Dey, A.; Ye, J. Z.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z. Y.; Yin, J.; Wang, Y. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 2021, 15, 10775–10981.

50

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

51

Murray, C.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

52

Bullen, C. R.; Mulvaney, P. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Lett. 2004, 4, 2303–2307.

53

Deka, S.; Genovese, A.; Zhang, Y.; Miszta, K.; Bertoni, G.; Krahne, R.; Giannini, C.; Manna, L. Phosphine-free synthesis of p-type copper(I) selenide nanocrystals in hot coordinating solvents. J. Am. Chem. Soc. 2010, 132, 8912–8914.

54

Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704–1711.

55

Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954.

56

Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.

57

Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.

58

Imran, M.; Di Stasio, F.; Dang, Z. Y.; Canale, C.; Khan, A. H.; Shamsi, J.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chem. Mater. 2016, 28, 6450–6454.

59

Seth, S.; Samanta, A. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Sci. Rep. 2016, 6, 37693.

60

Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014, 7, 2934–2938.

61

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

62

Lee, J. W.; Kim, H. S.; Park, N. G. Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 2016, 49, 311–319.

63

Zhang, F.; Huang, S.; Wang, P.; Chen, X. M.; Zhao, S. L.; Dong, Y. P.; Zhong, H. Z. Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 2017, 29, 3793–3799.

64

Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

65

Abdel-Latif, K.; Epps, R. W.; Kerr, C. B.; Papa, C. M.; Castellano, F. N.; Abolhasani, M. Facile room-temperature anion exchange reactions of inorganic perovskite quantum dots enabled by a modular microfluidic platform. Adv. Funct. Mater. 2019, 29, 1900712.

66

Wei, S.; Yang, Y. C.; Kang, X. J.; Wang, L.; Huang, L. J.; Pan, D. C. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields. Chem. Commun. 2016, 52, 7265–7268.

67

Koscher, B. A.; Bronstein, N. D.; Olshansky, J. H.; Bekenstein, Y.; Alivisatos, A. P. Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 2016, 138, 12065–12068.

68

Liu, M.; Zhong, G. H.; Yin, Y. M.; Miao, J. S.; Li, K.; Wang, C. Q.; Xu, X. R.; Shen, C.; Meng, H. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335.

69

Pan, G. C.; Bai, X.; Yang, D. W.; Chen, X.; Jing, P. T.; Qu, S. N.; Zhang, L. J.; Zhou, D. L.; Zhu, J. Y.; Xu, W. et al. Doping lanthanide into perovskite nanocrystals: Highly improved and expanded optical properties. Nano Lett. 2017, 17, 8005–8011.

70

Lozhkina, O. A.; Murashkina, A. A.; Shilovskikh, V. V.; Kapitonov, Y. V.; Ryabchuk, V. K.; Emeline, A. V.; Miyasaka, T. Invalidity of band-gap engineering concept for Bi3+ heterovalent doping in CsPbBr3 halide perovskite. J. Phys. Chem. Lett. 2018, 9, 5408–5411.

71

Arunkumar, P.; Gil, K. H.; Won, S.; Unithrattil, S.; Kim, Y. H.; Kim, H. J.; Im, W. B. Colloidal organolead halide perovskite with a high Mn solubility limit: A step toward Pb-free luminescent quantum dots. J. Phys. Chem. Lett. 2017, 8, 4161–4166.

72

Huang, G. G.; Wang, C. L.; Xu, S. H.; Zong, S. F.; Lu, J.; Wang, Z. Y.; Lu, C. G.; Cui, Y. P. Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange. Adv. Mater. 2017, 29, 1700095.

73

Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.

74

Strey, R.; Wagner, P.; Viisanen, Y. The problem of measuring homogeneous nucleation rates and the molecular contents of nuclei: Progress in the form of nucleation pulse measurements. J. Phys. Chem. 1994, 98, 7748–7758.

75
Mullin, J. W. Crystallization, 4th ed; Elsevier: Amsterdam, 2001.https://doi.org/10.1016/B978-075064833-2/50009-7
76

LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

77

Xie, R. G.; Li, Z.; Peng, X. G. Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457–15466.

78

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

79

Xie, R. G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. Angew. Chem., Int. Ed. 2008, 47, 7677–7680.

80

Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28, 65–108.

81

Ostwald, W. Über die vermeintliche Isomerie des rotten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z. Phys. Chem. 1900, 34, 495–503.

82
Baldan, A. Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J. Mater. Sci. 2002, 37, 2171–2202.
83

Lai, R. C.; Pu, C. D.; Peng, X. G. On-surface reactions in the growth of high-quality CdSe nanocrystals in nonpolar solutions. J. Am. Chem. Soc. 2018, 140, 9174–9183.

84

Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

85

Chen, Y. F.; Johnson, E.; Peng, X. G. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening. J. Am. Chem. Soc. 2007, 129, 10937–10947.

86

Lee, W. R.; Kim, M. G.; Choi, J. R.; Park, J. I.; Ko, S. J.; Oh, S. J.; Cheon, J. Redox-transmetalation process as a generalized synthetic strategy for core–shell magnetic nanoparticles. J. Am. Chem. Soc. 2005, 127, 16090–16097.

87

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

88

Penn, R. L.; Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 1999, 63, 1549–1557.

89

Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticleassembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287.

90

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

91

Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

92

Udayabhaskararao, T.; Kazes, M.; Houben, L.; Lin, H.; Oron, D. Nucleation, growth, and structural transformations of perovskite nanocrystals. Chem. Mater. 2017, 29, 1302–1308.

93

Dang, Z. Y.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124–2132.

94

Dang, Z. Y.; Shamsi, J.; Akkerman, Q. A.; Imran, M.; Bertoni, G.; Brescia, R.; Manna, L. Low-temperature electron beam-induced transformations of cesium lead halide perovskite nanocrystals. ACS Omega 2017, 2, 5660–5665.

95

Wei, Y.; Cheng, Z. Y.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350.

96

Koolyk, M.; Amgar, D.; Aharon, S.; Etgar, L. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. Nanoscale 2016, 8, 6403–6409.

97

Xu, K.; Vickers, E. T.; Luo, B. B.; Wang, Q. H.; Allen, A. C.; Wang, H. M.; Cherrette, V.; Li, X. M.; Zhang, J. Z. Room temperature synthesis of cesium lead bromide perovskite magic sized clusters with controlled ratio of carboxylic acid and benzylamine capping ligands. Sol. Energy Mater. Sol. Cells 2020, 208, 110341.

98

Xu, K.; Vickers, E. T.; Luo, B. B.; Allen, A. C.; Chen, E. F.; Roseman, G.; Wang, Q. H.; Kliger, D. S.; Millhauser, G. L.; Yang, W. J. et al. First synthesis of Mn-doped cesium lead bromide perovskite magic sized clusters at room temperature. J. Phys. Chem. Lett. 2020, 11, 1162–1169.

99

Vickers, E. T.; Xu, K.; Dreskin, B. W.; Graham, T. A.; Li, X. M.; Zhang, J. Z. Ligand dependent growth and optical properties of hybrid organo-metal halide perovskite magic sized clusters. J. Phys. Chem. C 2019, 123, 18746–18752.

100

Li, Y. X.; Huang, H.; Xiong, Y.; Kershaw, S. V.; Rogach, A. L. Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis. Angew. Chem., Int. Ed. 2018, 57, 5833–5837.

101

Burlakov, V. M.; Hassan, Y.; Danaie, M.; Snaith, H. J.; Goriely, A. Competitive nucleation mechanism for CsPbBr3 perovskite nanoplatelet growth. J. Phys. Chem. Lett. 2020, 11, 6535–6543.

102

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

103

Huang, H.; Feil, M. W.; Fuchs, S.; Debnath, T.; Richter, A. F.; Tong, Y.; Wu, L. Z.; Wang, Y. O.; Döblinger, M.; Nickel, B. Growth of perovskite CsPbBr3 nanocrystals and their formed superstructures revealed by in situ spectroscopy. Chem. Mater. 2020, 32, 8877–8884.

104

Liu, H. W.; Wu, Z. N.; Shao, J. R.; Yao, D.; Gao, H.; Liu, Y.; Yu, W. L.; Zhang, H.; Yang, B. CsPbxMn1−xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano 2017, 11, 2239–2247.

105

Schwartz, H. A.; Laurenzen, H.; Marzouk, A.; Runkel, M.; Brinkmann, K. O.; Rogalla, D.; Riedl, T.; Ashhab, S.; Olthof, S. Band-gap tuning in all-inorganic CsPbxSn1−xBr3 perovskites. ACS Appl. Mater. Interfaces 2021, 13, 4203–4210.

106

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

107

Butkus, J.; Vashishtha, P.; Chen, K.; Gallaher, J. K.; Prasad, S. K. K.; Metin, D. Z.; Laufersky, G.; Gaston, N.; Halpert, J. E.; Hodgkiss, J. M. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 2017, 29, 3644–3652.

108

Moss, T. S. The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 1954, 67, 775–782.

109

Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev. 1954, 93, 632–633.

110

Kamat, P. V.; Dimitrijevic, N. M.; Nozik, A. J. Dynamic Burstein–Moss shift in semiconductor colloids. J. Phys. Chem. 1989, 93, 2873–2875.

111

Castelli, I. E.; García-Lastra, J. M.; Thygesen, K. S.; Jacobsen, K. W. Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2014, 2, 081514.

112

Tao, S. X.; Schmidt, I.; Brocks, G.; Jiang, J. K.; Tranca, I.; Meerholz, K.; Olthof, S. Absolute energy level positions in tin-and lead-based halide perovskites. Nat. Commun. 2019, 10, 2560.

113

Zhang, X. L.; Cao, W. Y.; Wang, W. G.; Xu, B.; Liu, S.; Dai, H. T.; Chen, S. M.; Wang, K.; Sun, X. W. Efficient light-emitting diodes based on green perovskite nanocrystals with mixed-metal cations. Nano Energy 2016, 30, 511–516.

114

Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477–485.

115

Xiao, Z. W.; Meng, W. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Mater. Horiz. 2017, 4, 206–216.

116

Prasanna, R.; Gold-Parker, A.; Leijtens, T.; Conings, B.; Babayigit, A.; Boyen, H. G.; Toney, M. F.; McGehee, M. D. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 2017, 139, 11117–11124.

117

Berger, R. F. Design principles for the atomic and electronic structure of halide perovskite photovoltaic materials: Insights from computation. Chem.—Eur. J. 2018, 24, 8708–8716.

118

Xie, Y. J.; Peng, B.; Bravić, I.; Yu, Y.; Dong, Y. R.; Liang, R. Q.; Ou, Q. R.; Monserrat, B.; Zhang, S. Y. Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping. Adv. Sci. 2020, 7, 2001698.

119

Xiao, Z. W.; Yan, Y. F. Progress in theoretical study of metal halide perovskite solar cell materials. Adv. Energy Mater. 2017, 7, 1701136.

120

Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757.

121

Li, X. T.; Fu, Y. P.; Pedesseau, L.; Guo, P. J.; Cuthriell, S.; Hadar, I.; Even, J.; Katan, C.; Stoumpos, C. C.; Schaller, R. D. et al. Negative pressure engineering with large cage cations in 2D halide perovskites causes lattice softening. J. Am. Chem. Soc. 2020, 142, 11486–11496.

122

Knutson, J. L.; Martin, J. D.; Mitzi, D. B. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 2005, 44, 4699–4705.

123

Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 2014, 14, 3608–3616.

124

Umari, P.; Mosconi, E.; De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 2014, 4, 4467.

125

Goyal, A.; McKechnie, S.; Pashov, D.; Tumas, W.; van Schilfgaarde, M.; Stevanović, V. Origin of pronounced nonlinear band gap behavior in lead-tin hybrid perovskite alloys. Chem. Mater. 2018, 30, 3920–3928.

126

Rajagopal, A.; Stoddard, R. J.; Hillhouse, H. W.; Jen, A. K. Y. On understanding bandgap bowing and optoelectronic quality in Pb-Sn alloy hybrid perovskites. J. Mater. Chem. A 2019, 7, 16285–16293.

127

Li, Q. Q.; Liu, Y. F.; Chen, P.; Hou, J. S.; Sun, Y.; Zhao, G. Y.; Zhang, N.; Zou, J.; Xu, J. Y.; Fang, Y. Z. et al. Excitonic luminescence engineering in tervalent-europium-doped cesium lead halide perovskite nanocrystals and their temperature-dependent energy transfer emission properties. J. Phys. Chem. C 2018, 122, 29044–29050.

128

Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

129

Yang, Y. A.; Chen, O.; Angerhofer, A.; Cao, Y. C. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc. 2006, 128, 12428–12429.

130

Beaulac, R.; Schneider, L.; Archer, P. I.; Bacher, G.; Gamelin, D. R. Light-induced spontaneous magnetization in doped colloidal quantum dots. Science 2009, 325, 973–976.

131

Dong, Y. T.; Choi, J.; Jeong, H. K.; Son, D. H. Hot electrons generated from doped quantum dots via upconversion of excitons to hot charge carriers for enhanced photocatalysis. J. Am. Chem. Soc. 2015, 137, 5549–5554.

132

Parobek, D.; Roman, B. J.; Dong, Y. T.; Jin, H.; Lee, E.; Sheldon, M.; Son, D. H. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 2016, 16, 7376–7380.

133

Chen, D. Q.; Fang, G. L.; Chen, X. Silica-coated Mn-doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: Exciton-to-Mn energy transfer and blue-excitable solid-state lighting. ACS Appl. Mater. Interfaces 2017, 9, 40477–40487.

134

Fei, L. L.; Yuan, X.; Hua, J.; Ikezawa, M.; Zeng, R. S.; Li, H. B.; Masumoto, Y.; Zhao, J. L. Enhanced luminescence and energy transfer in Mn2+ doped CsPbCl3−xBrx perovskite nanocrystals. Nanoscale 2018, 10, 19435–19442.

135

Ricciarelli, D.; Meggiolaro, D.; Belanzoni, P.; Alothman, A. A.; Mosconi, E.; De Angelis, F. Energy vs charge transfer in manganese-doped lead halide perovskites. ACS Energy Lett. 2021, 6, 1869–1878.

136

Luo, C.; Li, W.; Fu, J.; Yang, W. Q. Constructing gradient energy levels to promote exciton energy transfer for photoluminescence controllability of all-inorganic perovskites and application in single-component WLEDs. Chem. Mater. 2019, 31, 5616–5624.

137

Wei, S. H.; Zhang, S. B. Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe. Phys. Rev. B 2002, 66, 155211.

138

Zhang, S. B.; Wei, S. H.; Zunger, A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 2001, 63, 075205.

139

Yong, Z. J.; Guo, S. Q.; Ma, J. P.; Zhang, J. Y.; Li, Z. Y.; Chen, Y. M.; Zhang, B. B.; Zhou, Y.; Shu, J.; Gu, J. L. et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 2018, 140, 9942–9951.

140

Lany, S.; Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Phys. Rev. B 2008, 78, 235104.

141

Song, F. L.; Qian, C. J.; Wang, Y. N.; Zhang, F.; Peng, K.; Wu, S. Y.; Xie, X.; Yang, J. N.; Sun, S. B.; Yu, Y. et al. Hot polarons with trapped excitons and octahedra-twist phonons in CH3NH3PbBr3 hybrid perovskite nanowires. Laser Photonics Rev. 2020, 14, 1900267.

142

Das, S.; De, A.; Samanta, A. Ambient condition Mg2+ doping producing highly luminescent green-and violet-emitting perovskite nanocrystals with reduced toxicity and enhanced stability. J. Phys. Chem. Lett. 2020, 11, 1178–1188.

143

Saidaminov, M. I.; Kim, J.; Jain, A.; Quintero-Bermudez, R.; Tan, H. R.; Long, G. K.; Tan, F. R.; Johnston, A.; Zhao, Y. C.; Voznyy, O. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 2018, 3, 648–654.

144

Mondal, N.; De, A.; Samanta, A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Lett. 2019, 4, 32–39.

145

Zheng, K. B.; Zhu, Q. S.; Abdellah, M.; Messing, M. E.; Zhang, W.; Generalov, A.; Niu, Y. R.; Ribaud, L.; Canton, S. E.; Pullerits, T. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 2015, 6, 2969–2975.

146

Wu, K. W.; Bera, A.; Ma, C.; Du, Y. M.; Yang, Y.; Li, L.; Wu, T. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 2014, 16, 22476–22481.

147

Liu, P. Z.; Chen, W.; Wang, W. G.; Xu, B.; Wu, D.; Hao, J. J.; Cao, W. Y.; Fang, F.; Li, Y.; Zeng, Y. Y. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 2017, 29, 5168–5173.

148

Bodnarchuk, M. I.; Boehme, S. C.; ten Brinck, S.; Bernasconi, C.; Shynkarenko, Y.; Krieg, F.; Widmer, R.; Aeschlimann, B.; Günther, D.; Kovalenko, M. V. et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett. 2019, 4, 63–74.

149

Li, F.; Liu, Y.; Wang, H. L.; Zhan, Q.; Liu, Q. L.; Xia, Z. G. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem. Mater. 2018, 30, 8546–8554.

150

Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569.

151

Almeida, G.; Infante, I.; Manna, L. Resurfacing halide perovskite nanocrystals. Science 2019, 364, 833–834.

152

Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.

153

Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J. K.; Sinatra, L.; Alyami, N.; Zhao, C. et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single-and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett. 2015, 6, 5027–5033.

154

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

155

Ahmed, T.; Seth, S.; Samanta, A. Boosting the photoluminescence of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts. Chem. Mater. 2018, 30, 3633–3637.

156

Di Stasio, F.; Christodoulou, S.; Huo, N. J.; Konstantatos, G. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater. 2017, 29, 7663–7667.

157

Ahmed, G. H.; El-Demellawi, J. K.; Yin, J.; Pan, J.; Velusamy, D. B.; Hedhili, M. N.; Alarousu, E.; Bakr, O. M.; Alshareef, H. N.; Mohammed, O. F. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett. 2018, 3, 2301–2307.

158

Swarnkar, A.; Mir, W. J.; Nag, A. Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites? ACS Energy Lett. 2018, 3, 286–289.

159

Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.

160

Zhao, X. G.; Yang, J. H.; Fu, Y. H.; Yang, D. W.; Xu, Q. L.; Yu, L. P.; Wei, S. H.; Zhang, L. J. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638.

161

Ravi, V. K.; Singhal, N.; Nag, A. Initiation and future prospects of colloidal metal halide double-perovskite nanocrystals: Cs2AgBiX6 (X = Cl, Br, I). J. Mater. Chem. A 2018, 6, 21666–21675.

162

McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348–1354.

163

Bekenstein, Y.; Dahl, J. C.; Huang, J. M.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P. D.; Alivisatos, A. P. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett. 2018, 18, 3502–3508.

164

Volonakis, G.; Haghighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.; Giustino, F. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 2017, 8, 772–778.

165

Lee, W.; Hong, S.; Kim, S. Colloidal synthesis of lead-free silver-indium double-perovskite Cs2AgInCl6 nanocrystals and their doping with lanthanide ions. J. Phys. Chem. C 2019, 123, 2665–2672.

166

Zhou, J.; Xia, Z. G.; Molokeev, M. S.; Zhang, X. W.; Peng, D. S.; Liu, Q. L. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. J. Mater. Chem. A 2017, 5, 15031–15037.

167

Chen, S. W. H.; Shen, C. C.; Wu, T. Z.; Liao, Z. Y.; Chen, L. F.; Zhou, J. R.; Lee, C. F.; Lin, C. H.; Lin, C. C.; Sher, C. W. et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res. 2019, 7, 416–422.

168

Yang, B.; Hong, F.; Chen, J. S.; Tang, Y. X.; Yang, L.; Sang, Y. B.; Xia, X. S.; Guo, J. W.; He, H. X.; Yang, S. Q. et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1−yBiyX6 (X: Br, Cl; 0 ≤ y ≤ 1) double perovskite nanocrystals. Angew. Chem. 2019, 131, 2300–2305.

169

Wang, C.; Liu, Y.; Guo, Y. R.; Ma, L. L.; Liu, Y. L.; Zhou, C. Y.; Yu, X.; Zhao, G. J. Lead-free sodium bismuth halide Cs2NaBiX6 double perovskite nanocrystals with highly efficient photoluminesence. Chem. Eng. J. 2020, 397, 125367.

170

Lee, W.; Choi, D.; Kim, S. Colloidal synthesis of shape-controlled Cs2NaBiX6 (X = Cl, Br) double perovskite nanocrystals: Discrete optical transition by non-bonding characters and energy transfer to Mn dopants. Chem. Mater. 2020, 32, 6864–6874.

171

Gray, M. B.; Hariyani, S.; Strom, T. A.; Majher, J. D.; Brgoch, J.; Woodward, P. M. High-efficiency blue photoluminescence in the Cs2NaInCl6: Sb3+ double perovskite phosphor. J. Mater. Chem. C 2020, 8, 6797–6803.

172

Han, P. G.; Mao, X.; Yang, S. Q.; Zhang, F.; Yang, B.; Wei, D. H.; Deng, W. Q.; Han, K. L. Lead-free sodium–indium double perovskite nanocrystals through doping silver cations for bright yellow emission. Angew. Chem. 2019, 131, 17391–17395.

173

Zhou, L.; Xu, Y. F.; Chen, B. X.; Kuang, D. B.; Su, C. Y. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 2018, 14, 1703762.

174

Levy, S.; Khalfin, S.; Pavlopoulos, N. G.; Kauffmann, Y.; Atiya, G.; Shaek, S.; Dror, S.; Shechter, R.; Bekenstein, Y. The role silver nanoparticles plays in silver-based double-perovskite nanocrystals. Chem. Mater. 2021, 33, 2370–2377.

175

Lv, K. X.; Qi, S. P.; Liu, G. N.; Lou, Y. B.; Chen, J. X.; Zhao, Y. X. Lead-free silver-antimony halide double perovskite quantum dots with superior blue photoluminescence. Chem. Commun. 2019, 55, 14741–14744.

176

Hu, Q. S.; Niu, G. D.; Zheng, Z.; Li, S. R.; Zhang, Y. N.; Song, H. S.; Zhai, T. Y.; Tang, J. Tunable color temperatures and efficient white emission from Cs2Ag1−xNaxIn1−yBiyCl6 double perovskite nanocrystals. Small 2019, 15, 1903496.

177

Creutz, S. E.; Crites, E. N.; De Siena, M. C.; Gamelin, D. R. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Lett. 2018, 18, 1118–1123.

178

Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

179

Li, X.; Xu, S. H.; Liu, F.; Qu, J. F.; Shao, H. B.; Wang, Z. Y.; Cui, Y. P.; Ban, D. Y.; Wang, C. L. Bi and Sb codoped Cs2Ag0.1Na0.9InCl6 double perovskite with excitation-wavelength-dependent dual-emission for anti-counterfeiting application. ACS Appl. Mater. Interfaces 2021, 13, 31031–31037.

180

Wu, D. F.; Tao, Y.; Huang, Y. Y.; Huo, B. J.; Zhao, X. S.; Yang, J. Y.; Jiang, X. F.; Huang, Q.; Dong, F.; Tang, X. S. High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals. J. Catal. 2021, 397, 27–35.

181

Ahmad, R.; Nutan, G. V.; Singh, D.; Gupta, G.; Soni, U.; Sapra, S.; Srivastava, R. Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Res. 2021, 14, 1126–1134.

182

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767.

183

Benin, B. M.; Dirin, D. N.; Morad, V.; Wörle, M.; Yakunin, S.; Rainò, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M. V. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem., Int. Ed. 2018, 57, 11329–11333.

184

Stadler, W.; Hofmann, D. M.; Alt, H. C.; Muschik, T.; Meyer, B. K.; Weigel, E.; Müller-Vogt, G.; Salk, M.; Rupp, E.; Benz, K. W. Optical investigations of defects in Cd1−xZnxTe. Phys. Rev. B 1995, 51, 10619–10630.

185

Locardi, F.; Cirignano, M.; Baranov, D.; Dang, Z. Y.; Prato, M.; Drago, F.; Ferretti, M.; Pinchetti, V.; Fanciulli, M.; Brovelli, S. et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989–12995.

186

Manna, D.; Das, T. K.; Yella, A. Tunable and stable white light emission in Bi3+-alloyed Cs2AgInCl6 double perovskite nanocrystals. Chem. Mater. 2019, 31, 10063–10070.

187

Yang, B.; Mao, X.; Hong, F.; Meng, W. W.; Tang, Y. X.; Xia, X. S.; Yang, S. Q.; Deng, W. Q.; Han, K. L. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission. J. Am. Chem. Soc. 2018, 140, 17001–17006.

188

Xiao, Z. W.; Du, K. Z.; Meng, W. W.; Mitzi, D. B.; Yan, Y. F. Chemical origin of the stability difference between copper(I)-and silver(I)-based halide double perovskites. Angew. Chem. 2017, 129, 12275–12279.

189

Liu, Y.; Jing, Y. Y.; Zhao, J.; Liu, Q. L.; Xia, Z. G. Design optimization of lead-free perovskite Cs2AgInCl6: Bi nanocrystals with 11.4% photoluminescence quantum yield. Chem. Mater. 2019, 31, 3333–3339.

190

Luo, J. J.; Li, S. R.; Wu, H. D.; Zhou, Y.; Li, Y.; Liu, J.; Li, J. H.; Li, K. H.; Yi, F.; Niu, G. D. et al. Cs2AgInCl6 double perovskite single crystals: Parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics 2018, 5, 398–405.

191

Liu, Y.; Nag, A.; Manna, L.; Xia, Z. G. Lead-free double perovskite Cs2AgInCl6. Angew. Chem., Int. Ed. 2021, 60, 11592–11603.

192

Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 2016, 7, 1254–1259.

193

Filip, M. R.; Hillman, S.; Haghighirad, A. A.; Snaith, H. J.; Giustino, F. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J. Phys. Chem. Lett. 2016, 7, 2579–2585.

194

Karmakar, A.; Bernard, G. M.; Meldrum, A.; Oliynyk, A. O.; Michaelis, V. K. Tailorable indirect to direct band-gap double perovskites with bright white-light emission: Decoding chemical structure using solid-state NMR. J. Am. Chem. Soc. 2020, 142, 10780–10793.

195

Tran, T. T.; Panella, J. R.; Chamorro, J. R.; Morey, J. R.; McQueen, T. M. Designing indirect-direct bandgap transitions in double perovskites. Mater. Horiz. 2017, 4, 688–693.

196

Wang, C. Y.; Liang, P.; Xie, R. J.; Yao, Y.; Liu, P.; Yang, Y. T.; Hu, J.; Shao, L. Y.; Sun, X. W.; Kang, F. Y. Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 2020, 32, 7814–7821.

197

Locardi, F.; Sartori, E.; Buha, J.; Zito, J.; Prato, M.; Pinchetti, V.; Zaffalon, M. L.; Ferretti, M.; Brovelli, S.; Infante, I. et al. Emissive Bi-doped double perovskite Cs2Ag1−xNaxInCl6 nanocrystals. ACS Energy Lett. 2019, 4, 1976–1982.

198

Han, P. G.; Zhang, X.; Mao, X.; Yang, B.; Yang, S. Q.; Feng, Z. C.; Wei, D. H.; Deng, W. Q.; Pullerits, T.; Han, K. L. Size effect of lead-free halide double perovskite on luminescence property. Sci. China Chem. 2019, 62, 1405–1413.

199

Chen, N.; Cai, T.; Li, W. H.; Hills-Kimball, K.; Yang, H. J.; Que, M. D.; Nagaoka, Y.; Liu, Z. Y.; Yang, D.; Dong, A. G. et al. Yb-and Mn-doped lead-free double perovskite Cs2AgBiX6 (X = Cl, Br) nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 16855–16863.

200

Yao, M. M.; Wang, L.; Yao, J. S.; Wang, K. H.; Chen, C.; Zhu, B. S.; Yang, J. N.; Wang, J. J.; Xu, W. P.; Zhang, Q. et al. Improving lead-free double perovskite Cs2NaBiCl6 nanocrystal optical properties via ion doping. Adv. Opt. Mater. 2020, 8, 1901919.

201

Liu, Y.; Rong, X. M.; Li, M. Z.; Molokeev, M. S.; Zhao, J.; Xia, Z. G. Incorporating rare-earth terbium(III) ions into Cs2AgInCl6: Bi nanocrystals toward tunable photoluminescence. Angew. Chem., Int. Ed. 2020, 59, 11634–11640.

202

Xie, Y. J.; Yu, Y.; Gong, J. Y.; Yang, C.; Zeng, P.; Dong, Y. R.; Yang, B. L.; Liang, R. Q.; Ou, Q. R.; Zhang, S. Y. Encapsulated room-temperature synthesized CsPbX3 perovskite quantum dots with high stability and wide color gamut for display. Opt. Mater. Express 2018, 8, 3494–3505.

203

Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587.

204

Scaife, D. E.; Weller, P. F.; Fisher, W. G. Crystal preparation and properties of cesium tin(II) trihalides. J. Solid State Chem. 1974, 9, 308–314.

205

Fan, Q. Q.; Biesold-McGee, G. V.; Ma, J. Z.; Xu, Q. N.; Pan, S.; Peng, J.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed. 2020, 59, 1030–1046.

206

Liu, Q.; Yin, J.; Zhang, B. B.; Chen, J. K.; Zhou, Y.; Zhang, L. M.; Wang, L. M.; Zhao, Q.; Hou, J. S.; Shu, J. et al. Theory-guided synthesis of highly luminescent colloidal cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2021, 143, 5470–5480.

207

Kang, C. T.; Rao, H. S.; Fang, Y. P.; Zeng, J. J.; Pan, Z.; Zhong, X. Antioxidative stannous oxalate derived lead-free stable CsSnX3 (X = Cl, Br, and I) perovskite nanocrystals. Angew. Chem. 2021, 133, 670–675.

208

Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W. L.; Baikie, T.; Zhang, Z. Y.; Sherburne, M.; Li, S. Z.; Asta, M.; Mathews, N. et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 2015, 3, 23829–23832.

209

Saparov, B.; Mitzi, D. B. Organic–inorganic perovskites: Structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558–4596.

210

Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556.

211

Yan, H. W.; Yang, Y. L.; Fu, Z. P.; Yang, B. F.; Zuo, J.; Fu, S. Q. Excitation-power dependence of the near-band-edge photoluminescence of ZnO inverse opals and nanocrystal films. J. Lumin. 2008, 128, 245–249.

212

Hesse, S.; Zimmermann, J.; von Seggern, H.; Ehrenberg, H.; Fuess, H.; Fasel, C.; Riedel, R. CsEuBr3: Crystal structure and its role in the photostimulation of Cs Br:Eu2+. J. Appl. Phys. 2006, 100, 083506.

213

Hackenschmied, P.; Schierning, G.; Batentschuk, M.; Winnacker, A. Precipitation-induced photostimulated luminescence in CsBr:Eu2+. J. Appl. Phys. 2003, 93, 5109–5112.

214

Zhang, S. Y.; Huang, Y. L.; Seo, H. J. Luminescence properties and structure of Eu2+ doped KMgPO4 phosphor. Opt. Mater. 2010, 32, 1545–1548.

215

Kobayasi, T.; Mroczkowski, S.; Owen, J. F.; Brixner, L. H. Fluorescence lifetime and quantum efficiency for 5d → 4f transitions in Eu2+ doped chloride and fluoride crystals. J. Lumin. 1980, 21, 247–257.

216

Luo, J. J.; Yang, L. B.; Tan, Z. F.; Xie, W. W.; Sun, Q.; Li, J. H.; Du, P. P.; Xiao, Q.; Wang, L.; Zhao, X. et al. Efficient blue light emitting diodes based on europium halide perovskites. Adv. Mater. 2021, 33, 2101903.

217

Tanaka, K.; Mikami, A.; Ogura, T.; Taniguchi, K.; Yoshida, M.; Nakajima, S. High brightness red electroluminescence in CaS: Eu thin films. Appl. Phys. Lett. 1986, 48, 1730–1732.

218

Li, J. Y.; Wang, L. D.; Zhao, Z. F.; Sun, B. X.; Zhan, G.; Liu, H. Y.; Bian, Z. Q.; Liu, Z. W. Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes. Nat. Commun. 2020, 11, 5218.

219

Zu, Y. Q.; Xi, J.; Li, L.; Dai, J. F.; Wang, S. P.; Yun, F.; Jiao, B.; Dong, H.; Hou, X.; Wu, Z. Z. High-brightness and color-tunable FAPbBr3 perovskite nanocrystals 2.0 enable ultrapure green luminescence for achieving recommendation 2020 displays. ACS Appl. Mater. Interfaces 2020, 12, 2835–2841.

220

Yoon, H. C.; Kang, H.; Lee, S.; Oh, J. H.; Yang, H.; Do, Y. R. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 2016, 8, 18189–18200.

221

Panfil, Y. E.; Oded, M.; Banin, U. Colloidal quantum nanostructures: Emerging materials for display applications. Angew. Chem., Int. Ed. 2018, 57, 4274–4295.

222

Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018, 3, 641–646.

223

Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924–7929.

224

Sun, J. Y.; Rabouw, F. T.; Yang, X. F.; Huang, X. Y.; Jing, X. P.; Ye, S.; Zhang, Q. Y. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application. Adv. Funct. Mater. 2017, 27, 1704371.

225

Kim, Y. H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y. H.; Xu, H. X.; Nagane, S.; Wexler, R. B.; Kim, D. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 2021, 15, 148–155.

226

Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

227

Rogers, J. A.; DeSimone, J. M. Novel materials. Proc. Natl. Acad. Sci. USA 2016, 113, 11667–11669.

228

Shin, M.; Nam, S. W.; Sadhanala, A.; Shivanna, R.; Anaya, M.; Jiménez-Solano, A.; Yoon, H.; Jeon, S.; Stranks, S. D.; Hoye, R. L. Z. et al. Understanding the origin of ultrasharp sub-bandgap luminescence from zero-dimensional inorganic perovskite Cs4PbBr6. ACS Appl. Energy Mater. 2020, 3, 192–199.

229

Hoye, R. L. Z.; Lai, M. L.; Anaya, M.; Tong, Y.; Gałkowski, K.; Doherty, T.; Li, W. W.; Huq, T. N.; Mackowski, S.; Polavarapu, L. et al. Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes. ACS Energy Lett. 2019, 4, 1181–1188.

230

Chiba, T.; Hoshi, K.; Pu, Y. J.; Takeda, Y.; Hayashi, Y.; Ohisa, S.; Kawata, S.; Kido, J. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 2017, 9, 18054–18060.

231

Yan, F.; Xing, J.; Xing, G. C.; Quan, L. N.; Tan, S. T.; Zhao, J. X.; Su, R.; Zhang, L. L.; Chen, S.; Zhao, Y. W. et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett. 2018, 18, 3157–3164.

232

Stranks, S. D. Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2017, 2, 1515–1525.

233

Zou, W.; Li, R. Z.; Zhang, S. T.; Liu, Y. L.; Wang, N. N.; Cao, Y.; Miao, Y. F.; Xu, M. M.; Guo, Q.; Di, D. W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 2018, 9, 608.

234

Pan, G. C.; Bai, X.; Xu, W.; Chen, X.; Zhai, Y.; Zhu, J. Y.; Shao, H.; Ding, N.; Xu, L.; Dong, B. et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3−x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl. Mater. Interfaces 2020, 12, 14195–14202.

235

Sharma, D. K.; Hirata, S.; Vacha, M. Single-particle electroluminescence of CsPbBr3 perovskite nanocrystals reveals particle-selective recombination and blinking as key efficiency factors. Nat. Commun. 2019, 10, 4499.

236

Liu, X. K.; Xu, W. D.; Bai, S.; Jin, Y. Z.; Wang, J. P.; Friend, R. H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21.

Nano Research
Pages 6522-6550
Cite this article:
Xie Y, Zhou A, Zhang X, et al. Metal cation substitution of halide perovskite nanocrystals. Nano Research, 2022, 15(7): 6522-6550. https://doi.org/10.1007/s12274-022-4224-7
Topics:

1133

Views

22

Crossref

22

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 10 November 2021
Revised: 27 January 2022
Accepted: 10 February 2022
Published: 23 April 2022
© Tsinghua University Press 2022
Return