AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage

Zhengkun Xie1( )Zeying Yang1Xiaowei An4Xiyan Yue2Jiajia Wang2Shusheng Zhang1Weihua Chen1Abuliti Abudula2Guoqing Guan2,3( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Graduate School of Science and Technology, Hirosaki University, Aomori 036-8560, Japan
Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, Aomori 030-0813, Japan
Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Show Author Information

Graphical Abstract

A lithiated 2-mercaptopyridine (2-MP-Li) organosulfide was synthesized and used as the soluble catholyte for large-scale grid energy storage in the future.

Abstract

Development of catholytes with long-cycle lifespan, high interfacial stability, and fast electrochemical kinetics is crucial for the comprehensive deployment of high-energy density lithium metal batteries (LMBs) with cost-efficiency. In this study, a lithiated 2-mercaptopyridine (2-MP-Li) organosulfide was synthesized and used as the soluble catholyte for the first time. Under the routine working mode, the LMB using this 2-MP-Li catholyte possessed high capacity retention of 55.4% with a Coulombic efficiency (CE) of near 100% after 2,000 cycles. When a cell system was fully filled with 2-MP-Li catholyte, it yielded a double capacity with 15% improvement in the capacity retention, corresponding to 0.0182% capacity decay per cycle, as well as excellent rate performance even at 6 mA·cm−2. These superior achievements resulted from the enhanced interfacial stability of Li anode induced by the salt-type 2-MP-Li molecule and the avoiding of using neutral catholyte as the initial active material, thereby mitigating the side reactions originating from the polysulfide shuttle effect. Furthermore, density functional theory (DFT) calculation and kinetics investigations proved the pseudocapacitive characteristic and faster ion diffusion coefficient with this design. Besides, the fabricated energy storage device showed excellent performance but with low economic cost and easy processing. Such a LMB with an alterable amount of capacity has a high potential to be applied in flow-cell type batteries for large-scale grid energy storage in the future.

Electronic Supplementary Material

Download File(s)
12274_2022_4225_MOESM1_ESM.pdf (1.8 MB)

References

1

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

2

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

3

Xie, Z. K.; Wu, Z. J.; An, X. W.; Yue, X. Y.; Wang, J. J.; Abudula, A.; Guan, G. Q. Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Mater. 2020, 32, 386–401.

4

Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

5

Li, W. D.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34.

6

Fu, Y. Z.; Su, Y. S.; Manthiram, A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew. Chem., Int. Ed. 2013, 52, 6930–6935.

7

Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

8

Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

9

Wu, Z. J.; Xie, Z. K.; Yoshida, A.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renew. Sust. Energy Rev. 2019, 109, 367–385.

10

Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345–6404.

11

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

12

Wu, Y. W.; Zeng, R. H.; Nan, J. M.; Shu, D.; Qiu, Y. C.; Chou, S. L. Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv. Energy Mater. 2017, 7, 1700278.

13

Lu, Y.; Hou, X. S.; Miao, L. C.; Li, L.; Shi, R. J.; Liu, L. J.; Chen. J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7020–7024.

14

Lee, S.; Lee, K.; Ku, K.; Hong, J.; Park, S. Y.; Kwon, J. E.; Kang. K. Utilizing latent multi-redox activity of p-type organic cathode materials toward high energy density lithium-organic batteries. Adv. Energy Mater. 2020, 10, 2001635.

15

Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu. Y. Z. Organotrisulfide: A high capacity cathode material for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2016, 55, 10027–10031.

16

Li, F. L.; Si, Y. B.; Liu, B. J.; Li, Z. J.; Fu. Y. Z. Lithium benzenedithiolate catholytes for rechargeable lithium batteries. Adv. Funct. Mater. 2019, 29, 1902223.

17

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

18

Xie, Z. K.; An, X. W.; Wu, Z. J.; Yue, X. Y.; Wang, J. J.; Hao, X. G.; Abudula, A.; Guan, G. Q. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries. J. Mater. Sci. Technol. 2021, 74, 119–127.

19

Lu, Z. Y.; Li, W. T.; Long, Y.; Liang, J. C.; Liang, Q. H.; Wu, S. C.; Tao, Y.; Weng, Z.; Lv, W.; Yang, Q. H. Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode. Adv. Funct. Mater. 2020, 30, 1907343.

20

Wei, J. Y.; Zhang, X. Q.; Hou, L. P.; Shi, P.; Li, B. Q.; Xiao, Y.; Yan, C.; Yuan, H.; Huang, J. Q. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2003012.

21

Lau, V. W. H.; Moudrakovski, I.; Yang, J.; Zhang, J. L.; Kang. Y. M. Uncovering the shuttle effect in organic batteries and counter-strategies thereof: A case study of the N,N'-dimethylphenazine cathode. Angew. Chem., Int. Ed. 2020, 59, 4023–4034.

22

Meng, J. T.; Tang, Q.; Zhou, L. Y.; Zhao, C.; Chen, M.; Shen, Y. D.; Zhou, J.; Feng, G.; Shen, Y.; Huang. Y. H. A stirred self-stratified battery for large-scale energy storage. Joule 2020, 4, 953–966.

23

Xie, Z. K.; Wu, Z. J.; An, X. W.; Yoshida, A.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Bifunctional ionic liquid and conducting ceramic co-assisted solid polymer electrolyte membrane for quasi-solid-state lithium metal batteries. J. Membr. Sci. 2019, 586, 122–129.

24

Xie, Z. K.; Wu, Z. J.; An, X. W.; Yue, X. Y.; Yoshida, A.; Du, X.; Hao, X. G.; Abudula, A.; Guan, G. Q. 2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability. Chem. Eng. J. 2020, 393, 124789.

25

Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283–3291.

26

Wang, D. Y.; Si, Y. B.; Li, J. J.; Fu. Y. Z. Tuning the electrochemical behavior of organodisulfides in rechargeable lithium batteries using N-containing heterocycles. J. Mater. Chem. A 2019, 7, 7423–7429.

27

Sun, X. Y.; Wang, Z. W. Understanding of the role of carbon fiber paper in proton exchange membrane fuel cells. J. Electrochem. Energy Conv. Stor. 2022, 19, 014501.

28

Shi, R. J.; Liu, L. J.; Lu, Y.; Li, Y. X.; Zheng, S. B.; Yan, Z. H.; Zhang, K.; Chen, J. In situ polymerized conjugated poly(pyrene-4,5,9,10-tetraone)/carbon nanotubes composites for high-performance cathode of sodium batteries. Adv. Energy Mater. 2020, 11, 2002917.

29

Arora, S.; Shen, W. X.; Kapoor, A. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles. Renew. Sust. Energy Rev. 2016, 60, 319–1331.

30

Gutiérrez, A.; Alonso, C.; López, M. F.; Escudero, M. L. XPS study of the displacement of an electrodeposited Cu monolayer on Pt by mercaptopyridines. Surf. Sci. 1999, 430, 206–212.

31

Herrera, S.; Tasca, F.; Williams, F. J.; Calvo, E. J.; Carro, P.; Salvarezza, R. C. Surface structure of 4-mercaptopyridine on Au(111): A new dense phase. Langmuir 2017, 33, 9565–9572.

32

Wang, D. Y.; Si, Y. B.; Guo, W.; Fu, Y. Z. Long cycle life organic polysulfide catholyte for rechargeable lithium batteries. Adv. Sci. 2020, 7, 1902646.

33

Couce, M. D.; Cherchi, V.; Faraglia, G.; Russo, U.; Sindellari, L.; Valle, G.; Zancan, N. Synthesis and characterization of organotin complexes with 2-mercaptopyridine derivatives. Appl. Organometal. Chem. 1996, 10, 35–45.

34

Kato, M.; Omura, A.; Toshikawa, A.; Kishi, S.; Sugimoto, Y. Vapor-induced luminescence switching in crystals of the Syn isomer of a dinuclear (bipyridine)platinum(II) complex bridged with pyridine-2-thiolate ions. Angew. Chem., Int. Ed. 2002, 41, 3183–3185.

35

Xie, Z. K.; Wu, Z. J.; An, X. W.; Yue, X. Y.; Xiaokaiti, P.; Yoshida, A.; Abudula, A.; Guan, G. Q. A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. J. Membr. Sci. 2020, 596, 117739.

36

Song, K. M.; Chen, W. H. An effective solid-electrolyte interphase for stable solid-state batteries. Chem 2021, 7, 3195–3197.

37

Liu, T.; Li, X. F.; Xu, C.; Zhang, H. M. Activated carbon fiber paper based electrodes with high electrocatalytic activity for vanadium flow batteries with improved power density. ACS Appl. Mater. Interfaces 2017, 9, 4626–4633.

38

Chiochan, P.; Kaewruang, S.; Phattharasupakun, N.; Wutthiprom, J.; Maihom, T.; Limtrakul, J.; Nagarkar, S. S.; Horike, S.; Sawangphruk. M. Chemical adsorption and physical confinement of polysulfides with the janus-faced interlayer for high-performance lithium-sulfur batteries. Sci. Rep. 2017, 7, 17703.

39
Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P.; Lu, W.; Amal, R.; Dai, L. M. Recent advances in flexible batteries: From materials to applications. Nano Res., in press, DOI: 10.1007/s12274-021-3820-2.
40

Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89, 206–218.

41

Tan, K. O.; Yang, C.; Weber, R. T.; Mathies, G.; Griffin, R. G. Time-optimized pulsed dynamic nuclear polarization. Sci. Adv. 2019, 5, eaav6909.

42

Kong, L.; Chen, J. X.; Peng, H. J.; Huang, J. Q.; Zhu, W. C.; Jin, Q.; Li, B. Q.; Zhang, X. T.; Zhang, Q. Current-density dependence of Li2S/Li2S2 growth in lithium-sulfur batteries. Energy Environ. Sci. 2019, 12, 2976–2982.

43

Xie, Z. K.; Wu, Y. M.; Kai, S.; Li, G. P.; Ye, B. X. A newly competitive electrochemical sensor for sensitive determination of chrysin based on electrochemically activated Ta2O5 particles modified carbon paste electrode. Electroanalysis 2017, 29, 835–842.

44

Nicholson, R. S.; Shain, I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 1964, 36, 706–723.

45

Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28.

46

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

47

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

48

Chen, Z.; Chao, D. L.; Liu, J. L.; Copley, M.; Lin, J. Y.; Shen, Z. X.; Kim, G. T.; Passerini, S. 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. J. Mater. Chem. A 2017, 5, 15669–15675.

49

Cui, C. Y.; Ji, X.; Wang, P. F.; Xu, G. L.; Chen, L.; Chen, J.; Kim, H.; Ren, Y.; Chen, F.; Yang, C. Y. et al. Integrating multiredox centers into one framework for high-performance organic Li-ion battery cathodes. ACS Energy Lett. 2020, 5, 224–231.

50

Yang, H. C.; Yin, L. C.; Liang, J.; Sun, Z. H.; Wang, Y. Z.; Li, H. C.; He, K.; Ma, L. P.; Peng, Z.; Qiu, S. Y. et al. An aluminum-sulfur battery with a fast kinetic response. Angew. Chem., Int. Ed. 2018, 57, 1898–1902.

51

Piao, N.; Liu, S. F.; Zhang, B.; Ji, X.; Fan, X. L.; Wang, L.; Wang, P. F.; Jin, T.; Liou, S. C.; Yang, H. C. et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021, 6, 1839–1848.

52

Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, Q. H. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 2020, 13, 430–436.

53

Wan, Y. H.; Song, K. M.; Chen, W. H.; Qin, C. D.; Zhang, X. X.; Zhang, J. Y.; Dai, H. L.; Hu, Z.; Yan, P. F.; Liu, C. T. et al. Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew. Chem., Int. Ed. 2021, 60, 11481–11486.

54

Bhargav, A.; Patil, S. V.; Fu, Y. Z. A phenyl disulfide@CNT composite cathode for rechargeable lithium batteries. Sustain. Energy Fuels 2017, 1, 1007–1012.

55

Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2010, 2, 760–765.

56

Wang, P. F.; Jin, T.; Zhang, J. X.; Wang, Q. C.; Ji, X.; Cui, C. Y.; Piao, N.; Liu, S. F.; Xu, J. J.; Yang, X. Q. et al. Elucidation of the Jahn–Teller effect in a pair of sodium isomer. Nano Energy 2020, 77, 105167.

57

Ding, Y.; Zhang, C. K.; Zhang, L. Y.; Zhou, Y. G.; Yu, G. H. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69–103.

Nano Research
Pages 6138-6147
Cite this article:
Xie Z, Yang Z, An X, et al. An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage. Nano Research, 2022, 15(7): 6138-6147. https://doi.org/10.1007/s12274-022-4225-6
Topics:

1244

Views

4

Crossref

6

Web of Science

7

Scopus

1

CSCD

Altmetrics

Received: 12 December 2021
Revised: 03 February 2022
Accepted: 10 February 2022
Published: 09 March 2022
© Tsinghua University Press 2022
Return